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a b s t r a c t

We study a diffusion control problem that is motivated by the dynamic admission and service rate control
problem for a G/M/N +G queue. The objective is to minimize long run average cost. Because the original
queueing control problem is not tractable, we solve the approximating diffusion control problem that
arises under the QED heavy traffic regime and show that its optimal solution has two components: (1) a
threshold control that regulates the diffusion and (2) a feedback-type drift rate control.

© 2017 Elsevier B.V. All rights reserved.

1. Introduction

We consider a service system where the system manager can
exercise both admission control and service rate control to reduce
congestion. Earlier literature on joint admission and service rate
control includes [3,1], and [4]. Our work generalizes these papers
by consideringmultiple servers aswell as general arrival and aban-
donment distributions. In particular, we assume that the service
systemunder consideration can bemodeled as aG/M/N+Gmulti-
server queue operating in QED heavy traffic regime also known
as the Halfin–Whitt heavy traffic regime. Customer inter-arrival
times are assumed to follow a general distribution with mean 1

λ

and variance σ 2
A . We assume service times follow an exponential

distribution and that the service rate can be adjusted. Specifically,
there exists a base service rateµwhich can be increased to reduce
congestion. Customers waiting for service abandon according to a
general distribution F (·) which satisfies F ′(0) = γ . All distributions
are assumed to be independent and identically distributed. The
system manager can also dynamically control arrivals by deciding
whether to admit or reject arrivals. Customers waiting in queue
incur a waiting cost of cw per unit time, and each customer
abandonment costs a. To rule out uninteresting cases, we assume
cw + aγ > 0. There is also an idleness cost hi ≥ 0 per idle
server per unit time. This cost can be thought of as an opportunity
cost and it also captures lost revenues due to idleness when calls
generate income as in outbound call centers (see also section 2.4
in [7] for a detailed discussion on this cost structure). Service rate
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adjustments beyond the base service rate µ incur a cost c(·) and
each customer rejected costs p. We list more specific assumptions
regarding the cost structure in Section 2. Finally, the objective of
the system manager is to minimize long run average cost also
known as ergodic cost.

Note that the queueing control problem (QCP) described above
is not tractable since the arrival and abandonment distributions are
not Markovian. Thus, we follow a similar approach to [2] and [3],
and we solve the associated diffusion control problem (DCP) that
arises when the original queueing system operates in the QED
heavy traffic regime. Our primary contribution is to solve the DCP
and establish the solution has two components: (1) a threshold
control that regulates the diffusion and (2) a drift rate control that
increases in system state. We also show that the threshold is finite
if and only if the effective abandonment cost is larger than the cost of
rejection and establish a relationship between the optimal thresh-
old and the optimal long run average cost. The optimality of the
alluded policy assumes the existence of a solution to theHamilton–
Jacobi–Bellman (HJB) optimality equations. Furthermore, both the
drift control and threshold control depend explicitly on this solu-
tion. However, finding a solution to the HJB optimality equations
is not a trivial task. In particular, when the original queueing
system operates under QED, the underlying diffusion can assume
both positive and negative values. Hence, solving the HJB optimal-
ity equations requires solving two separate differential equations
without initial conditions and smooth-pasting them at the origin.
Moreover, the solutions of these equations is not trivial either and
does not follow from the standard theory of differential equations.
Thus, we follow a novel approach and construct a solution to the
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HJB optimality equations via a nested parametrization approach as
in [7]. This approach also allows us to devise an algorithm, which
calculates the optimal threshold and diffusion cost and can be used
to construct an optimal policy for the motivating QCP.

The rest of the paper is organized as follows. In Section 2, we
describe and solve the approximating diffusion control problem
and construct a solution to the HJB optimality equations. We
make concluding remarks in Section 3. All proofs and a detailed
numerical study are provided in the Electronic Companion (EC)
(see Appendix A).

2. The diffusion control problem

In this section, we will present and solve the diffusion con-
trol problem that serves to approximate the joint admission and
service rate control problem for the underlying queueing system.
In Section 2.1, we present the approximating diffusion and its
cost structure which leads us to formulate the diffusion control
problem. In Section 2.2,we provide a solution to the approximating
DCP under the assumption that a solution to the HJB optimality
equations exists. In Section 2.3, we construct a solution to the HJB
optimality equations.

2.1. The approximating control problem

We consider a filtered probability space ((Ω,F, P) , {Ft}) and
let B(t) denote a Brownian motion with respect to the associated
filtration. Then, the evolution of the state process is given by

X(t) = X(0) + σB(t) −

∫ t

0
[β (X(s))+ u(s)] ds − U(t), (2.1)

where

σ 2
= σ 2

A + µ and β(x) =

{
β0 + µx x ≤ 0
β0 + γ x x > 0,

and approximates the centered and scaled number of customers in
the system. The processes u and U in (2.1) approximate the scaled
service rate adjustment and scaled cumulative number of rejected
customers, respectively.When there is no control, i.e., when u(t) =

U(t) = 0 for all t , the process in (2.1) becomes an Ornstein–
Uhlenbeck process with infinitesimal drift −β(x) and infinitesimal
variance σ 2. The infinitesimal drift is linear in the state variable
and depends on the base service rate µ and the abandonment
distribution via γ = F ′(0). The constant β0 in the infinitesimal drift
denotes the service grade and approximates the capacity imbalance
of the original queueing system.

We let Π denote the set of admissible control policies and
assume that allπ := (u,U) ∈ Π satisfy the following assumptions:

(A1) There exists a weak solution to (2.1) and E|X(t)|
t → 0 as

t → ∞.

(A2) The control process u is non-negative, progressively measur-
able, and locally integrable.

(A3) The control process U is non-negative, non-decreasing, and
RCLL.

Assumptions (A1)–(A3) allow us to restrict attention to policies
under which Eq. (2.1) is well-defined and the process X(t) is non-
explosive. This is important because assumptions (A2) and (A3)
allow for u(t) ≥ 0 when X(t) < 0, and for U to increase when
X(t) < 0. Hence, assumption (A1) limits the drift that pushes the
process away from zero. Note that if we also assume an upper
bound on u(t) when X(t) < 0 (see, for example equation (3.4) and
the discussion following in [7]), and also assume that U increases
only when X ≥ 0, then assumption (A1) follows directly and is not
necessary.

Next, we make the following assumption on the control cost
function c(·):

(A4) The control cost c(·) is non-decreasing and continuous. It also
satisfies c(0) = 0 and

inf
{
c(x)
x

: x ∈ R, x ≥ y
}

↑ ∞ as y ↑ ∞. (2.2)

Then, we can define the function φ : ℜ → [0,∞)

φ(y) := sup
x

{yx − c(x)} (2.3)

and let ψ(y) denote the smallest maximizer in (2.3). It can be
verified (see for example [2]) that both φ(y) and ψ(y) are non-
decreasing functions and that φ′(y) = ψ(y). These functions will
play a critical role in characterizing the optimal policy.

Next, we define the effective waiting cost hw := cw + aγ > 0.
Alternatively, we can define p̄ :=

hw
γ

= a +
cw
γ

as the effective
abandonment cost. Finally, we define the holding cost as

h(x) := hix−
+ hwx+.

Then, the cumulative diffusion cost up to time t , under an admis-
sible policy π = (u,U) ∈ Π , is given by

ξπ (t) =

∫ t

0
(c(u(t)) + h(X(t))) dt + pU(t). (2.4)

Our objective is to minimize the long run average (ergodic) cost,
within the class of admissible policies, so we solve

min
π∈Π

lim inf
t→∞

E[ξπ (t)]
t

. (2.5)

Our first result is a verification lemma, which characterizes the
minimum achievable cost for any admissible policy π = (u,U) ∈

Π . Later, in Theorem1,wewill show that the optimal policy indeed
achieves this lower bound.

Lemma 1 (Minimum Achievable Cost). Suppose there exists a twice
continuously differentiable function V having bounded first deriva-
tive, and a positive constant κ that satisfies the HJB equation

min

{
σ 2

2
V ′′(x) − β (x) V ′(x) − φ(V ′(x)) + h(x) − κ,

p − V ′(x)

}
= 0, (2.6)

for all x ∈ ℜ. Then, for any admissible controlπ = (u,U) ∈ Π having
associated cumulative cost ξπ (t) as given in (2.4),

lim inf
t→∞

E[ξπ (t)]
t

≥ κ.

2.2. Diffusion control problem solution

First, we show that a solution to the HJB optimality equa-
tion (2.6) exists and that its specific behavior depends on the
relationship between p̄ and p.

Proposition 1 (Existence of a Solution to HJB Equations). There
exists a twice continuously differentiable function having bounded
derivative and constant κ that satisfy (2.6) as follows:

(i) If p < p̄, there exists a positive b⋆ := inf
{
x ≥ 0 : V ′(x) = p

}
such that
σ 2

2
V ′′(x) − β (x) V ′(x) − φ(V ′(x)) + h(x) = κ, (2.7)

for x ∈ (−∞, b⋆] and

σ 2

2
V ′′(x) − β (x) V ′(x) − φ(V ′(x)) + h(x) > κ, (2.8)
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