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a b s t r a c t

A prevalent operations research problem concerns the generation of appointment schedules that effec-
tively deal with variation in e.g. service times. In this paper we focus on the situation in which there
is a large number of statistically identical customers, leading to an essentially equidistant (‘stationary’)
schedule.We develop a powerful approach thatminimizes an objective function incorporating the service
provider’s idle times and the customers’ waiting times. Our main results concern easily computable, or
even closed-form, approximations to the optimal schedule with a near-perfect fit. In addition, accurate
explicit heavy-traffic approximations are provided, which, as we argue, can be considered as robust.

© 2017 Elsevier B.V. All rights reserved.

1. Introduction

Providers of service systems, e.g. in healthcare, are confronted
with two opposite interests: on the one hand there is a need to
control (or even reduce) costs, on the other hand, there is great
pressure to improve service quality. On an operational level this
amounts to avoiding excessive waiting times, whereas at the same
time the utilization level at which the staff works should be kept
sufficiently high; healthcare-related references are e.g. [1,9,10]. In
operations research these conflicting interests are typically man-
aged by using appropriate appointment schedules. The adequate de-
sign of such schedules is challenging due to various unpredictable
factors as pointed out by [5].

In this paper we develop schedules for the situation that the
randomness is caused by uncertainties in the service times, relying
on techniques that originate in queueing theory. The focus is on
the situation that (i) the service times of the individual customers
are independent and statistically identical, and (ii) the number of
customers to be scheduled is large. In this setting, we optimize an
objective function that incorporates the system’s utilization level
(through the provider’s idle time) aswell as the customers’ waiting
times; these components are weighted with factors ω and 1 − ω,
respectively (for some ω ∈ (0, 1)). As the number of customers is
large, the resulting optimal schedule is equidistant, and the queue
is effectively behaving as a D/G/1 system in stationarity. Typically,
already for relative small numbers of customers the thus obtained
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stationary scheduleprovides an accurate approximation for settings
with finitely many customers; see e.g. [11, Fig. 2].

Early references on stationary schedules are [15,18]; a more
recent paper inwhich stationary queues feature in an appointment
scheduling setting is [17], where the focus lies on estimating the
service provider’s preferred value of ω. A general procedure that
determines the interarrival time x of the optimal stationary sched-
ule (for any given service-time distribution and any weight ω, that
is), however, is still lacking; the development of such a procedure
is the objective of this paper.

In line with a commonly used procedure in the appointment
scheduling literature, we characterize the service-time distribu-
tion by its first two moments. Without loss of generality, we may
normalize time such that the mean service time is 1, and we
denote byϱ the corresponding squared coefficient of variation. Our
objective is to show that x follows (by good approximation) the
functional form 1 + A(ω)ϱB(ω). This functional form has the crucial
advantage that knowledge of the functions A(·) and B(·) (which are
both functions from (0, 1) to (0, ∞)) suffices to determine x.

The main contributions of the paper are the following. We
present three approaches to identify the optimal interarrival time.
(i) In the first approach we approximate the service times by
their phase-type counterpart, and determine A(ω) and B(ω) by
numerical approximation. (ii) In the second approach we use ex-
plicit knowledge about the special cases that the service times
have an exponential or Erlang(2) distribution, leading to a semi-
explicit approximation for A(ω) and B(ω). (iii) The third approach,
particularly accurate when ω is close to 1, is based on a heavy-
traffic approximation, and yields a closed-form expression for A(ω)
and B(ω) =

1
2 . In addition we assess the impact of approximating

a general service-time distribution by its phase-type counterpart.
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We conclude the paper by showing that the robust schedule (to
be used when only the first two moments of the service-time
distribution are available) coincides with the one based on the
heavy-traffic approximation.

The paper is organized as follows. Section 2 discusses ourmodel
and preliminaries (such as those on the phase-type approxima-
tion). In Section 3 our approximations for the optimal stationary
schedule are derived. Section 4 discusses the impact of the phase-
type approximation and robust schedules.

2. Model and approach

In this sectionwe first sketch themodel considered in this paper
by casting the appointment scheduling problem in a queueing-
theoretic framework. The model is introduced for a finite popu-
lation of customers, and then it is argued what queueing system is
obtained when the number of customers grows large. We also de-
scribe how the service times are approximated by an appropriately
chosen phase-type counterpart.

2.1. Preliminaries

We model the situation as a single-server queueing model.
Customers i = 1, . . . , n arrive at or before their scheduled arrival
time ti, with t1 = 0,wheren is thenumber of customer to be seen in
a single session; in this paper we primarily focus on the situation
that n is large. We consider the situation in which the customers
have appointments with a specific service provider, who therefore
acts as a single server.We assume that the service times B1, . . . , Bn
are i.i.d. random variables. We define byWi the netwaiting time of
the ith customer, that is, the time in between her scheduled arrival
and themoment she receives service, wherewe setW1 = 0.Define
Ii as the idle time prior to the ith customer’s arrival, with I1 = 0. It
is a standard result that, by virtue of the Lindley recursion, with
xi = ti+1 − ti (the interarrival time), the Ii can be determined
recursively:

Ii = max{xi−1 − Wi−1 − Bi−1, 0};

likewise,

Wi = max{Wi−1 + Bi−1 − xi−1, 0}. (1)

Evidently, we cannot have that both Wi and Ii are strictly positive.
This observation leads to the following identities, where Si = Wi +

Bi denotes the sojourn time of the ith customer:

Ii + Wi = | Si−1 − xi−1 | and W 2
i + I2i = (Si−1 − xi−1)2.

The makespan, defined as the epoch that customer n has been
fully served, can be written in two alternative ways, noting that∑n−1

i=1 xi = tn,
n∑

i=1

Bi +

n∑
i=1

Ii =

n−1∑
i=1

xi + Sn. (2)

In healthcare the makespan is also referred to as the session end
time.

2.2. Objective function

In our approach the schedules are generated so as to optimize
a specific objective function consisting of the customers’ waiting
times and server’s idle time. Weighting the relative importance of
idle andwaiting times byω ∈ (0, 1), this performance degradation
is expressed by the so-called weighted-linear objective function:
for a customer population of size n,

F (ℓ)
[x1, . . . , xn−1] = ω

n∑
i=1

EIi + (1 − ω)
n∑

i=1

EWi. (3)

For given weight ω, the optimal schedule is the sequence
x1, . . . , xn−1 that minimizes the objective function F (ℓ)

[x1, . . . ,
xn−1]. Define W (ω) =

∑n
i=1EWi and I(ω) =

∑n
i=1EIi as the mean

total waiting and idle time of the optimal schedule x1, . . . , xn−1 for
the weightω. Generally, whenω approaches 1 (i.e., the situation in
which the value of the objective function is essentially determined
by the idle times only), W (ω) explodes. Vice versa, when ω ap-
proaches 0 the contribution of themean total idle time experienced
by the server, i.e., I(ω), increases sharply.

Throughout this paper we primarily focus on the weighted-
linear cost function, but most of our material carries over to alter-
native cost functions, e.g. the weighted-quadratic one:

F (q)
[x1, . . . , xn−1] = ω

n∑
i=1

EI2i + (1 − ω)
n∑

i=1

EW 2
i ,

where ω is assumed to be in (0, 1). The ‘mixed’ objective functions
F (ℓq) (weighted-linear–quadratic) andF (qℓ) (weighted-quadratic–
linear) are defined in the obvious way.

2.3. Stationarity

In this paper we focus on the situation that the Bi are gov-
erned by a single distribution, while we let n grow large. When
the customers arrive equidistantly with interarrival time x, the
distribution of the waiting time is uniquely defined through the
distributional fixed point equation, cf. Eq. (1),

W = max{W + B − x, 0}.

The resulting queueing system is of the D/G/1 type, which does not
allow explicit solutions in general. In e.g. the cases of exponential
and Erlang(2) service times, however, the stationary waiting-time
distribution can be given in (semi-)closed-form; these results will
facilitate the generation of accurate approximations of the optimal
schedule, as we demonstrate in Section 3.

We now point out that the first moment EI can easily be found.
Dividing (2) by n, taking expectations, and considering the limit
when n → ∞, we conclude that

EI = x − EB. (4)

In the stationary setting the weighted-linear objective function
equals

ϕ(ℓ)
[x] = ω EI + (1 − ω)EW ,

which is now a function of the (constant) interarrival time x only.
The goal is to find the minimizer x. It is easily seen that such a
minimizer uniquely exists (and is larger than EB), due to the fact
that the objective function is convex. To this end, observe that EI
is linear in x, whereas it is known that EW is convex in x.

The stationary version of the weighted-quadratic objective
function evidently reads

ϕ(q)
[x] = ω EI2 + (1 − ω)EW 2.

The ‘mixed’ stationary objective functions ϕ(ℓq) and ϕ(qℓ) are de-
fined in a self-evident manner.

2.4. Phase-type fit

Unfortunately, for general service times B no analytical pro-
cedures are available to determine the above objective functions.
We remedy this by replacing the actual service times by their so-
called phase-type counterparts. The rationale behind this approach
is the well-known fact that phase-type distributions are capable of
approximating any positive distribution with arbitrary accuracy;
see e.g. [4]. The resulting queueing system allows (semi-)explicit
computation of the objective function, as pointed out in e.g. [13].
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