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a b s t r a c t

This paper gives a unified and succinct approach to theO(1/
√
k),O(1/k), andO(1/k2) convergence rates

of the subgradient, gradient, and accelerated gradient methods for unconstrained convex minimization.
In the three cases the proof of convergence follows from a generic bound defined by the convex conjugate
of the objective function.
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1. Introduction

The subgradient, gradient, and accelerated gradient methods
are icons in the class of first-order algorithms for convex op-
timization. Under a suitable Lipschitz continuity assumption on
the objective function and a judicious choice of step-sizes, the
subgradient method yields a point whose objective value is within
O(1/

√
k) of the optimal value after k iterations. In a similar vein,

under a suitable Lipschitz continuity assumption on the gradient
of the objective function and a judicious choice of step-sizes, the
gradient and accelerated gradient methods yield points whose
objective values are within O(1/k) and O(1/k2) of the optimal
value respectively after k iterations.

Although the proofs of the O(1/
√
k),O(1/k), and O(1/k2) con-

vergence rates for these three algorithms share some common
ideas, they are traditionally treated separately. In particular, the
known proofs of the O(1/k2) convergence rate of the accelerated
gradient method, first established by Nesterov in a landmark pa-
per [13], are notoriously less intuitive than those of the O(1/

√
k)

and O(1/k) convergence rates of the subgradient and gradient
methods. Nesterov’s accelerated gradient method has had a pro-
found influence in optimization and has led to a vast range of
developments. See, e.g., [4,5,14,17,19] and the many references
therein.

Several recent articles [1,7,9,12,15,18] have proposed novel ap-
proaches that add insight and explain how the accelerated gradient
method and some variants achieve a faster convergence rate. This
paper makes a contribution of similar spirit. It provides a unified
and succinct approach for deriving the convergence rates of the
subgradient, gradient, and accelerated gradient algorithms. The
crux of the approach is a generic upper bound via the convex
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conjugate of the objective function. (See Lemma1 in Section 2.) The
construction of the upper bound captures key common features
and differences among the three algorithms.

The paper is self-contained and relies only on the basic
convex analysis background recalled next. (For further details
see [6,11,16].) Let f : Rn

→ R ∪ {∞} be a convex function. Endow
Rn with an inner product ⟨·, ·⟩ and let ∥·∥denote the corresponding
Euclidean norm. Given a constant G > 0, the function f is G-
Lipschitz if for all x, y ∈ dom(f ) := {x ∈ Rn

: f (x) < ∞}

f (x) − f (y) ≤ G∥x − y∥.

Observe that if f is convex and G-Lipschitz then for all x ∈

int(dom(f )) and g ∈ ∂ f (x)

g ∈ ∂ f (x) ⇒ ∥g∥ ≤ G. (1)

Suppose f is differentiable on dom(f ). Given a constant L > 0, the
gradient ∇f is L-Lipschitz if for all x, y ∈ dom(f )

∥∇f (x) − ∇f (y)∥ ≤ L∥x − y∥.

Observe that if f is differentiable and ∇f is L-Lipschitz then for all
x, y ∈ dom(f )

f (y) ≤ f (x) + ⟨∇f (x), y − x⟩ +
L
2
∥y − x∥2.

In particular, if x ∈ dom(f ) is such that x −
1
L∇f (x) ∈ dom(f ) then

f
(
x −

1
L
∇f (x)

)
≤ f (x) −

1
2L

∥∇f (x)∥2. (2)

Let f ∗
: Rn

→ R ∪ {∞} denote the convex conjugate of f , that is,

f ∗(z) = sup
x∈Rn

{⟨z, x⟩ − f (x)} .
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The construction of the conjugate readily yields the following
property known as Fenchel’s inequality. For all z, x ∈ Rn

f ∗(z) + f (x) ≥ ⟨z, x⟩

and equality holds if z ∈ ∂ f (x).

2. First-order methods for unconstrained convex optimization

Throughout the sequel assume f : Rn
→ R is a convex function

and consider the problem

min
x∈Rn

f (x). (3)

Let f̄ and X̄ respectively denote the optimal value and set of optimal
solutions to (3).

Algorithms 1 and 2 describe respectively the subgradient
method and accelerated gradient method for (3). The subgradient
method becomes the gradient method when f is differentiable.
Algorithm 2 is a variant of Nesterov’s original accelerated gradient
method [13]. This version has been discussed in [4,14,19].

Algorithm 1 Subgradient/gradient method
1: input: x0 ∈ Rn and a convex function f : Rn

→ R
2: for k = 0, 1, 2, . . . do
3: pick gk ∈ ∂ f (xk) and tk > 0
4: xk+1 := xk − tkgk
5: end for

Algorithm 2 Accelerated gradient method
1: input: x0 ∈ Rn and a differentiable convex function f : Rn

→ R
2: y0 := x0, θ0 := 1
3: for k = 0, 1, 2, . . . do
4: pick tk > 0
5: xk+1 := yk − tk∇f (yk)
6: let θk+1 ∈ (0, 1) be such that θ2k+1 = θ2k (1 − θk+1)
7: yk+1 := xk+1 +

θk+1(1−θk)
θk

(xk+1 − xk)
8: end for
Theorems 1, 2, and 3 state well-known convergence properties

of Algorithms 1 and 2.

Theorem 1. Suppose f is G-Lipschitz. Then the sequence of iterates
xk ∈ Rn, k = 1, 2, . . . generated by Algorithm 1 satisfies∑k

i=0 tif (xi) −
G2
2

∑k
i=0 t

2
i∑k

i=0 ti
≤ f (x) +

∥x0 − x∥2

2
∑k

i=0 ti
(4)

for all x ∈ Rn. In particular, if X̄ ̸= ∅ then mini=0,1,...,kf (xi) − f̄ ≤

dist(x0,X̄)2+G2
∑k

i=0t
2
i

2
∑k

i=0ti
, andmini=0,1,...,kf (xi) − f̄ ≤

dist(x0,X̄)2+G2

2
√
k+1

for ti =

1
√
k+1
, i = 0, 1, . . . , k.

Theorem 2. Suppose ∇f is L-Lipschitz and tk =
1
L , k = 0, 1, . . ..

Then the sequence of iterates xk ∈ Rn, k = 1, 2, . . . generated by
Algorithm 1 satisfies

f (x1) + · · · + f (xk)
k

≤ f (x) +
L∥x0 − x∥2

2k
(5)

for all x ∈ Rn. In particular, if X̄ ̸= ∅ then f (xk) − f̄ ≤
L dist(x0,X̄)2

2k .

Theorem 3. Suppose f is differentiable, ∇f is L-Lipschitz, and tk =
1
L

for k = 0, 1, . . .. Then the sequence of iterates xk ∈ Rn, k = 1, 2, . . .
generated by Algorithm 2 satisfies

f (xk) ≤ f (x) +
Lθ2k−1∥x0 − x∥2

2
(6)

for all x ∈ Rn. In particular, if X̄ ̸= ∅ then f (xk) − f̄ ≤
2L dist(x0,X̄)2

(k+1)2
.

The central contribution of this paper is a unified approach to
the proofs of Theorems 1, 2, and 3. The crux of the approach is the
following lemma.

Lemma 1. There exists a sequence zk ∈ Rn, k = 1, 2, . . . such that
for k = 1, . . . and µk =

1∑k
i=0ti

the left-hand side LHSk of (4) in
Theorem 1 satisfies

LHSk ≤ −f ∗(zk) + ⟨zk, x0⟩ −
∥zk∥2

2µk

= −f ∗(zk) + min
u∈Rn

{
⟨zk, u⟩ +

µk

2
∥u − x0∥2

}
. (7)

There also exist sequences zk ∈ Rn, k = 1, 2, . . . such that (7) holds
for µk =

L
k and the left-hand side LHSk of (5) in Theorem 2, as well

as for µk = Lθ2k−1 and the left-hand side LHSk of (6) in Theorem 3.

Lemma 1 captures some key common features and differences
among the subgradient, gradient, and accelerated gradient algo-
rithms. The right-hand side in (7) has the same form in all cases
and has the same kind of dependence on the initial point x0.
Furthermore, as Section 3details, the construction of the sequences
zk, µk, k = 1, 2 . . . follows the same template for the three
algorithms. However, some details of the construction for these
sequences need to be carefully tailored to each of the three algo-
rithms.

Proof of Theorems 1, 2, and 3. Lemma 1 and Fenchel’s inequality
imply that for some zk ∈ Rn, k = 1, 2, . . . and all x ∈ Rn the
left-hand-sides LHSk of (4), (5), and (6) satisfy

LHSk ≤ −f ∗(zk) + min
u∈Rn

{
⟨zk, u⟩ +

µk

2
∥u − x0∥2

}
≤ −f ∗(zk) + ⟨zk, x⟩ +

µk · ∥x − x0∥2

2

≤ f (x) +
µk · ∥x − x0∥2

2
.

To finish, recall that µk =
1∑k
i=0ti

for (4), µk =
L
k for (5), and

µk = Lθ2k−1 for (6). For the second part of Theorem 2 observe
that f (xk) ≤

f (x1)+···+f (xk)
k because (2) implies that f (xi+1) ≤

f (xi) −
1
2L∥∇f (xi)∥2

≤ f (xi), i = 0, 1, . . . . For the second part
of Theorem 3 observe that a straightforward induction shows that
the conditions θk+1 ∈ (0, 1), θ2k+1 = θ2k (1−θk+1), and θ0 = 1 imply
θk−1 ≤

2
k+1 . □

3. Proof of Lemma 1

Construct the sequences µk ∈ R, zk ∈ Rn, k = 1, 2 . . .
as follows. First, choose sequences θk ∈ (0, 1), yk ∈ Rn, gk ∈

∂ f (yk), k = 1, 2, . . . , and two initial values µ0 ∈ R+, z0 ∈ Rn

or µ1 ∈ R+, z1 ∈ Rn. Second, let µk ∈ R, zk ∈ Rn, k = 1, 2 . . . be
defined by the rules

zk+1 = (1 − θk)zk + θkgk
µk+1 = (1 − θk)µk.

This construction readily implies

⟨zk+1, x0⟩ −
∥zk+1∥

2

2µk+1
= (1 − θk)

(
⟨zk, x0⟩ −

∥zk∥2

2µk

)
+ θk

(⟨
gk, x0 −

zk
µk

⟩
−

θk

2(1 − θk)µk
∥gk∥2

)
,
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