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a b s t r a c t

In the context of theminimization of a real function, we propose a line search scheme that involves a new
positive definite modification of the Hessian. In this framework, a safeguard based on Gers̆gorin Circle’s
theorem provides an approximation of the Hessian that improves with iteration count. Convergence
analysis of the scheme is validated by numerical experiments.

© 2017 Elsevier B.V. All rights reserved.

1. Introduction

Line search method is one of the most competent, effectual
and expeditious methods for solving optimization problem, that
has been a significant area of fascination and concern for the
researchers (see [3,9,10,12,13]). The general structure of a descent
line search iterative scheme for a function f : Rn

→ R is x(k+1)
=

x(k) + αkp(k), where p(k) is a descent direction of f at x(k) and
αk is the step length at x(k) along p(k). For Newton’s method, p(k)
is ∇

2f (x(k))−1
∇f (x(k)), where ∇

2f (x(k)) and ∇f (x(k)) represent the
Hessian and gradient of f at x(k) respectively. In this method if the
initial guess is chosen far from the solution point, then the Hessian
of the objective function may not be positive definite at every
iterating point. In such case, the Hessian matrix can be modified
to an approximate positive definite matrix to ensure the descent
property of the scheme. Several techniques on positive definite
modification of Hessian matrix are summarized in Section 3.4,
Chapter 3, [7], which are based on computing eigenvalues using
two basic strategies. One of these strategies directly computes the
eigenvalues of the Hessian matrix at the current iteration point
and then suitably adds a diagonal matrix of the form τ I , where
τ = max(0, η − λmin(∇2f )), η and λmin(∇2f ) being a small
positive number and the minimum eigenvalue of the Hessian of f
respectively. This is a computationally expensive process in higher
dimension. Another strategy is based on the concept of modified
symmetric indefinite factorization of theHessianmatrix (see [4,8]).
Thismethod factorizes the permutedHessianmatrix into LBLT with
a lower triangularmatrix L and a block diagonalmatrix B of atmost
2 × 2 blocks, which makes the process computationally easier for
computing eigenvalues in comparison to the first strategy.
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In this paper, we propose a new approach that does not com-
pute eigenvalues, not even implicitly, at any stage like earlier
studies. This process first allows a positive definite safeguard at
every iteration, and then backtracks sequentially to the Hessian
matrix using Gers̆gorin circle theorem. The possibility of Cholesky
factorization is verified once in each iteration for investigating
the positive definiteness of a matrix. A real positive sequence
(converging to 1), is assigned during the iteration process for
generating the backtracking step. The global convergence property
of the proposed scheme is established with Wolfe inexact line
search under Zoutendijk condition. Further, it is proved that the
modified matrix at each iteration converges to the Hessian matrix
at the solution point. This fact ensures the superlinear convergence
property of the proposed scheme. The computational experience
on a set of test problems is provided for numerical support. The
performance profiles for the number of iterations, the number of
function evaluations, and the elapsed execution time on this test
set are also presented.

The following two existing results are required to proceed for
the theoretical development of this paper. The first result is based
on Gers̆gorin Circle Theorem [6,11].

Theorem 1.1. Let A be a complex matrix of order n, with entries aij.
For j ∈ {1, 2, 3, . . . , n}, let Ri =

∑
j̸=i|aij| and D(aii, Ri) be the closed

disc centred at aii with radius Ri. Such a disc is known as Gers̆gorin
disc. Every eigenvalue λ of A lies within at least one of the Gers̆gorin
disc D(aii, Ri), that is, | λ − aii |≤ Ri for some i.

Theorem 1.2 (Zoutendijk Theorem [14], Theorem No. 3.2 of [7]).
Consider kth iteration of an optimization algorithm for minimizing
f (x), x ∈ Rn in the form x(k+1)

= x(k) + αkp(k), where p(k) is a descent
direction and αk satisfiesWolfe condition. Suppose f is bounded below
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in Rn and continuously differentiable in an open set containing the
level set L = {x : f (x) ≤ f (x(0))}, where x(0) is the starting point
of the iteration. Assume also that ∇f is Lipschitz continuous on L .
That is, there exists a constant L > 0 such that ∥∇f (x) − ∇f (x̃)∥ <

L∥x − x̃∥ ∀x, x̃ ∈ L . Then
∑

k≥0cos
2θk∥∇f (x(k))∥2 < ∞, where θk

is the angle between p(k) and ∇f (x(k)).

The rest of the paper is organized as follows. Section 2 proposes
the idea of the new scheme and Section 3 describes the algorithm
and convergence of the scheme. A detailed computational experi-
ence is illustrated in Section 4 and some concluding remarks are
provided in Section 5.

2. Proposing new line search scheme

Consider an optimization problem

(P) : min
x∈Rn

f (x),

where f is twice differentiable. We propose a Newton-like scheme
that modifies kth iteration point as x(k+1)

= x(k) + αkp(k), where αk
is the step length and p(k) is the descent direction to move along.
Generally, p(k) is chosen as −D(k)−1

∇f (x(k)), where D(k) is a positive
definite approximation of the Hessian matrix. In this framework,
D(k) is formed based on Gers̆gorin Circle theorem which is used as
a positive definite safeguard to the Hessian, that improves with
iteration count. The construction of D(k) requires the following
lemma.

Lemma 2.1. The matrix A = (aij)n×n, where aij = āij + āji, δ > 0 a
small number,

āij =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂2f
∂xi∂xj

for j < i,

1
2

( j−1∑
t=1

⏐⏐⏐⏐ ∂2f
∂xi∂xt

⏐⏐⏐⏐+ n∑
s=i+1

⏐⏐⏐⏐ ∂2f
∂xs∂xj

⏐⏐⏐⏐+ δ

)
for j = i,

0 for j > i,

(1)

is positive definite.

Proof. A can be expressed explicitly as (see the equation in Box I).
Let Ri =

∑
j|i̸=j|aij|, ∀i, j = 1, 2, . . . , n. From the construction

of A,

aii > Ri. (3)

By Gers̆gorin’s Theorem, the eigenvalue λ of the symmetric matrix
A satisfies the condition

|λ − aii| ≤ Ri, (4)

which implies −(λ − aii) ≤ Ri and consequently from (3), λ ≥

aii − Ri > 0 . Hence A is positive definite. □

At kth stage ∇
2f (x(k)) may not be positive definite. Let us con-

sider a real positive monotonically convergent sequence {ck} such
that {ck} → 1, with 0 < c0 < 1 and construct a matrix B(k) as

B(k)
= (1 − ck)A(k)

+ ck∇2f (x(k)), (5)

where A(k) is designed using Lemma 2.1. As ck → 1, B(k) is close
to ∇

2f (x(k)) and A(k) can be treated as a safeguard at this stage. For
large k, B(k) approaches towards the actual Hessian matrix at local
minimumpoint. At every stage, a check on B(k) determineswhether
it is a positive definitematrix. The following algorithm summarizes
the idea described above.

Algorithm 1: Backtracking Based Positive Definite Hessian Modi-
fication
Data: Starting point x(0), ϵ, c0;
for k = 0, 1, 2 . . .

1. Find A(k) using (1); Compute B(k) by (5);
2. if Cholesky decomposition of B(k) is possible

D(k)
= B(k)

else
D(k)

= A(k);
3. x(k+1)

= x(k) − αkD(k)−1
∇f (x(k)), αk satisfies Wolfe conditions;

4. if ∥∇f (x(k+1))∥ < ϵ

Stop;
else

k = k + 1, ck+1 is computed ;
end;

end;

3. Convergence of the scheme

Consider f to be twice continuously differentiable. First, we
recall Theorem 3.6 from [7], which shows that if the search di-
rection approximates the Newton-direction well enough, then the
unit step length will satisfy the Wolfe conditions as the iterates
converge to the solution. Now, in addition to the assumptions
of Theorem 3.6 from [7], we consider that the condition number
κ(D(k)) is uniformly bounded for each k. Then from the discussion
of Section 3.2 of [7], global convergence of the proposed Newton-
like scheme can be established as follows.

Theorem3.1. Let κ(D(k)) denote the condition number of D(k). If there
exists some C > 0 such that κ(D(k)) < C for every k, then under
Theorem 1.2, ∥∇f (xk)∥ → 0 as k → ∞.

Proof. Let the eigenvalues of D(k) be 0 < λ
(k)
1 ≤ λ

(k)
2 ≤ · · · ≤ λ

(k)
n .

For any u ∈ Rn,

uTD(k)u ≥ λ
(k)
1 ∥u∥2.

Let θk be the angle between p(k) and ∇f (x(k)), where p(k) =

−D(k)−1
∇f (x(k)). Hence,

cos θk = −
∇f (k)

T
p(k)

∥∇f (k)T ∥∥p(k)∥
=

p(k)TD(k)p(k)

∥∇f (k)T ∥∥p(k)∥

≥ λ
(k)
1

∥p(k)∥
∥∇f (x(k))∥

. (6)

∥∇f (x(k))∥ = ∥D(k)p(k)∥ ≤ ∥D(k)
∥ ∥p(k)∥ = λ

(k)
n ∥p(k)∥. Using this in

(6), we have

cos θk = −
∇f (k)

T
p(k)

∥∇f (k)T ∥ ∥p(k)∥
≥

λ
(k)
1

λ
(k)
n

=
1

∥D(k)∥∥D(k)−1
∥

≥
1
C

.

Hence, under Zoutendijk condition, limk→∞∥∇f (x(k))∥ = 0. □

Moreover, in Section 3.3 of [7], it has been further stated that, if
the descent search direction is of the form p(k) = −D(k)−1

∇f (x(k)),
then the condition of Theorem 3.6 of [7] may be put equivalently
as

lim
k→∞

∥(D(k)
− ∇

2f (x∗))p(k)∥
∥p(k)∥

= 0. (7)

Hence, the superlinear convergence rate can be established if one
can show that B(k) becomes increasingly accurate approximation to
∇

2f (x(k)) along the search direction p(k), which we intend to show
in the proof of the following theorem.

Theorem 3.2. Suppose the sequence {x(k)} generated by Algo-
rithm 1, converges to the solution x∗. Then {x(k)} converges to x∗

superlinearly.
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