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a b s t r a c t

We first establish a new alternative theorem for a robust linear inequality system, where the dual
statement is expressed in terms of linear matrix inequalities and thus, it can be verified by solving a
semidefinite linear program. We then apply the established alternative theorem to derive a character-
ization of optimality for weakly Pareto solutions of a robust linear multiobjective optimization problem,
and to examine weak, strong and converse duality relations in robust linear multiobjective optimization.

© 2017 Elsevier B.V. All rights reserved.

1. Introduction

This paper is concerned with an uncertain linear inequality sys-
tem

x ∈ Rn, aj(uj)⊤x ≤ bj(uj), j = 1, . . . , q, (SU)

where aj : Rs
→ Rn, bj : Rs

→ R, j = 1, . . . , q, are affine
mappings given respectively by aj(uj) := a0j +

∑s
i=1u

i
ja

i
j and bj(uj) =

b0j +
∑s

i=1u
i
jb

i
j for uj := (u1

j , . . . , u
s
j ) ∈ Rs with aij ∈ Rn, bij ∈ R, i =

0, 1, . . . , s, j = 1, . . . , q fixed, and uj, j = 1, . . . , q, are uncertain
and they belong to the prescribed uncertainty sets Uj ⊂ Rs, j =

1, . . . , q.
Following the deterministic approach in robust optimization

(see e.g., [1,2]), we investigate the uncertain linear inequality sys-
tem (SU) by examining its robust counterpart:

x ∈ Rn, aj(uj)⊤x ≤ bj(uj), ∀uj ∈ Uj, j = 1, . . . , q. (SR)

Note that in the robust counterpart (SR) the parameter uncertain
uj, j = 1, . . . , q, are enforced for every possible value of the data
within the uncertainty set Uj, j = 1, . . . , q. We refer the interested
reader to [5,6] for some characterizations and computations of the
radius of robust error bounds for an uncertain linear inequality
system with general compact uncertainty sets Uj ⊂ Rn+1, j =

1, . . . , q.
It is well-known that alternative theorems for finite systems

of linear/convex inequalities have played important roles in the
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development of optimality conditions and duality for continuous
optimization problems and in the convergence analysis of opti-
mization algorithms; see e.g., [8,14,15,17,23] and the references
therein. Unlike theorems of the alternative for finite linear systems
and Farkas lemmas (cf. [9,13,14,20,21]), which provide a numeri-
cally checkable alternative certificate of the solvability of the given
linear system, alternative theorems for infinite or robust inequality
systems do not provide such a certificate in general inasmuch as
they relate to arbitrary (evenwithout topological structures) index
sets (cf. [13]).

Throughout this paper, the uncertainty sets Uj, j = 1, . . . , q,
are assumed to be compact and described by spectrahedrons (see
e.g., [22,24]); that is,

Uj :=
{
uj := (u1

j , . . . , u
s
j ) ∈ Rs

| A0
j +

s∑
i=1

ui
jA

i
j ⪰ 0

}
,

j = 1, . . . , q, (1.1)

where Ai
j, i = 0, 1, . . . , s, j = 1, . . . , q, are symmetric (mj × mj)

matrices with mj ∈ N := {1, 2, . . .}, and the linear matrix
inequalities A0

j +
∑s

i=1u
i
jA

i
j ⪰ 0, j = 1, . . . , q, signify that the

matrices A0
j +

∑s
i=1u

i
jA

i
j, j = 1, . . . , q, are positive semi-definite. It

is worth mentioning here that the spectrahedrons (1.1) possess a
large spectrum of infinite convex sets that appear in applications,
and they contain commonly used uncertainty sets of robust opti-
mization like ellipsoids, balls, polytopes and boxes [1,2].

The content of this paper is as follows. In Section 2, we es-
tablish a new alternative theorem for the robust linear inequality
system (SR) in which the dual statement can be checked by using
a semidefinite linear programming (cf. [7]). This is achieved by
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means of employing nice structures with linear matrix inequality
representations of the spectrahedral index sets (1.1) together with
a special variable transformation (cf. [7,16]), which paves the way
to present the dual statement in terms of linearmatrix inequalities.
In Section 3,we apply the established alternative theorem to derive
a characterization of optimality for weakly Pareto solutions of a
robust linear multiobjective optimization problem, and to explore
weak, strong and converse duality relations in robust linear multi-
objective optimization. The reader is referred to [3,11,12] for some
duality results on linear/nonsmooth semi-infinite multiobjective
optimization problems with arbitrary index sets, and to [4,19]
for several results about optimality conditions and/or duality of
nonsmooth robust multiobjective optimization problems.

2. Robust alternative theorem for linear inequalities

Throughout the paper, for each n ∈ N,Rn signifies the Euclidean
space whose norm is denoted by ∥ · ∥. The inner product in Rn

is defined by ⟨x, y⟩ := x⊤y for all x, y ∈ Rn. Given a nonempty
set Ω ⊂ Rn, the topological closure of Ω is denoted by clΩ , and
the convex conical hull of Ω is denoted by coneΩ , i.e., coneΩ :=

R+convΩ , where convΩ denotes the convex hull of Ω andR+ :=

[0, +∞) ⊂ R. A symmetric (n × n) matrix A is said to be positive
semi-definite, denoted byA ⪰ 0,whenever x⊤Ax ≥ 0 for all x ∈ Rn.

The main result of this paper is stated as follows.

Theorem 2.1 (Robust Alternative Theorem). Let (℘l, rl) ∈ Rn
×

R, l = 1, . . . , p, and let the cone C := cone
{(

aj(uj), bj(uj)
)

| uj ∈

Uj, j = 1, . . . , q
}
be closed. Assume that the robust linear inequality

system (SR) has a solution; i.e.,

X := {x ∈ Rn
| aj(uj)⊤x ≤ bj(uj), ∀uj ∈ Uj, j = 1, . . . , q} ̸= ∅.

Then, exactly one the following two statements holds:
(i) {x ∈ X | ℘⊤

l x < rl, l = 1, . . . , p} ̸= ∅;

(ii) ∃νl ≥ 0, l = 1, . . . , p,
∑p

l=1νl = 1, ∃λ0
j ≥ 0, λi

j ∈ R, j =

1, . . . , q, i = 1, . . . , s such that
p∑

l=1

νl℘l +

q∑
j=1

(λ0
j a

0
j +

s∑
i=1

λi
ja

i
j) = 0,

−

p∑
l=1

νlrl −
q∑

j=1

(λ0
j b

0
j +

s∑
i=1

λi
jb

i
j) ≥ 0,

and λ0
j A

0
j +

s∑
i=1

λi
jA

i
j ⪰ 0, j = 1, . . . , q.

To prove this theorem, we need the following general version
of Farkas’s Lemma, which can be found in [14, Theorem 4.3.4].

Lemma 2.2 (Generalized Farkas). Let be given (b, r) and (sj, pj) in
Rn

× R, where j varies in an arbitrary index set J . Suppose that the
system of inequalities

s⊤j x ≤ pj for all j ∈ J (2.1)

has a solution x ∈ Rn. Then, the following two properties are
equivalent:

(i) b⊤x ≤ r for all x satisfying (2.1);
(ii) (b, r) ∈ cl cone{(0n, 1) ∪ (sj, pj) | j ∈ J}.

Proof of Theorem 2.1. Let

C̃ := cone
{
(0n, 1) ∪

(
a0j +

s∑
i=1

ui
ja

i
j, b

0
j +

s∑
i=1

ui
jb

i
j

)
| uj ∈ Uj, j = 1, . . . , q

}
. (2.2)

We first note that the cone C̃ is known as characteristic cone
(cf. [13]) and it is closed under our assumption as shown in the
proof of [7, Theorem 2.1].

[Not (i) H⇒ (ii)] Assume that (i) fails. Then, let x ∈ X . There
exists l0 ∈ {1, . . . , p} such that

℘⊤

l0 x ≥ rl0 .

Now, invoking Lemma 2.2, we conclude that

(−℘l0 , −rl0 ) ∈ clC̃ = C̃ .

Then, there exist λ0 ≥ 0, µj ≥ 0, and uj := (u1
j , . . . , u

s
j ) ∈ Uj, j =

1, . . . , q such that

−℘l0 =

q∑
j=1

µj
(
a0j +

s∑
i=1

ui
ja

i
j

)
,

−rl0 = λ0 +

q∑
j=1

µj
(
b0j +

s∑
i=1

ui
jb

i
j

)
.

Putting νl0 := 1, νl := 0 for l ∈ {1, . . . , p} \ {l0}, and λ0
j :=

µj ≥ 0, λi
j := µjui

j ∈ R, j = 1, . . . , q, i = 1, . . . , s, we see that∑p
l=1νl = 1 and
p∑

l=1

νl℘l +

q∑
j=1

(λ0
j a

0
j +

s∑
i=1

λi
ja

i
j) = 0,

p∑
l=1

νlrl + λ0 +

q∑
j=1

(λ0
j b

0
j +

s∑
i=1

λi
jb

i
j) = 0.

The later equality means that −
∑p

l=1νlrl −
∑q

j=1(λ
0
j b

0
j +∑s

i=1λ
i
jb

i
j) = λ0 ≥ 0.

Consider j ∈ {1, . . . , q} arbitrary. The relation uj ∈ Uj ensures
that A0

j +
∑s

i=1u
i
jA

i
j ⪰ 0. We will verify that

λ0
j A

0
j +

s∑
i=1

λi
jA

i
j ⪰ 0. (2.3)

Indeed, if λ0
j = 0, then λi

j = 0 for all i = 1, . . . , s, and hence, (2.3)
holds trivially. If λ0

j ̸= 0, then

λ0
j A

0
j +

s∑
i=1

λi
jA

i
j = λ0

j

(
A0
j +

s∑
i=1

λi
j

λ0
j
Ai
j

)

= λ0
j

(
A0
j +

s∑
i=1

ui
jA

i
j

)
⪰ 0,

showing (2.3) holds, too. Consequently, (ii) is valid.
[(ii) H⇒ Not (i)] Assume that (ii) holds. It means that there

exist νl ≥ 0, l = 1, . . . , p,
∑p

l=1νl = 1, λ0
j ≥ 0, λi

j ∈

R, j = 1, . . . , q, i = 1, . . . , s such that
∑p

l=1νl℘l +
∑q

j=1(λ
0
j a

0
j +∑s

i=1λ
i
ja

i
j) = 0, −

∑p
l=1νlrl −

∑q
j=1(λ

0
j b

0
j +

∑s
i=1λ

i
jb

i
j) ≥

0 and λ0
j A

0
j +

∑s
i=1λ

i
jA

i
j ⪰ 0, j = 1, . . . , q. By letting ℘ :=∑p

l=1νl℘l, r :=
∑p

l=1νlrl, λ0 := −
∑p

l=1νlrl −
∑q

j=1(λ
0
j b

0
j +∑s

i=1λ
i
jb

i
j), we obtain that λ0 ≥ 0 and that

−℘ =

q∑
j=1

(λ0
j a

0
j +

s∑
i=1

λi
ja

i
j),

−r = λ0 +

q∑
j=1

(λ0
j b

0
j +

s∑
i=1

λi
jb

i
j),

(2.4)
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