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1. Introduction

This paper is concerned with an uncertain linear inequality sys-
tem
xeR",

a(uy) x < b(y), j=1,...,4q, (SU)

whereaJ:]RS—>]R b; :]RS—>]R,j_1
mappings given respectlvelybyaj(u]) =q +Zl 1Uia;
b0 + 3 1u]b]' for u; .= (u}, W) ER w1tha] € R", b} ER,i=
0, 1,...,s,j=1,...,qfixed, and u;,j = 1, ..., q, are uncertain
and they belong to the prescribed uncertainty sets U; C R®,j =
1,...,q.

Following the deterministic approach in robust optimization
(see e.g., [1,2]), we investigate the uncertain linear inequality sys-
tem (SU) by examining its robust counterpart:

.,q, are affine
uia; and bj(u;) =

xeR", qy)'x<bw), YyeU,j=1,...,q (SR)

Note that in the robust counterpart (SR) the parameter uncertain
u;,j = 1,...,q, are enforced for every possible value of the data
within the uncertainty set U;, j = 1, ..., g. We refer the interested
reader to [5,6] for some characterizations and computations of the
radius of robust error bounds for an uncertain linear inequality
system with general compact uncertainty sets U; C R =
1,...,q.

It is well-known that alternative theorems for finite systems
of linear/convex inequalities have played important roles in the
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development of optimality conditions and duality for continuous
optimization problems and in the convergence analysis of opti-
mization algorithms; see e.g., [8,14,15,17,23] and the references
therein. Unlike theorems of the alternative for finite linear systems
and Farkas lemmas (cf. [9,13,14,20,21]), which provide a numeri-
cally checkable alternative certificate of the solvability of the given
linear system, alternative theorems for infinite or robust inequality
systems do not provide such a certificate in general inasmuch as
they relate to arbitrary (even without topological structures) index
sets (cf. [13]).

Throughout this paper, the uncertainty sets U;,j = 1,...,q,
are assumed to be compact and described by spectrahedrons (see
e.g., [22,24]); that is,

Uj = {ujzz(u},...,u;)eRs|A°+Zu'A'>o
i=1,...,q (1.1)
where Al i=0,1,...,s,j = 1,...,q, are symmetric (m; x m;)

matrlces with m; € N := {1,2,...}, and the linear matrix
inequalities A? + >0 julAl > 0,j = 1,...,q, signify that the
matrices A0 + 21 1u‘A’ j=1,...,q, are positive semi-definite. It
is worth mentlonmg here that the spectrahedrons (1.1) possess a
large spectrum of infinite convex sets that appear in applications,
and they contain commonly used uncertainty sets of robust opti-
mization like ellipsoids, balls, polytopes and boxes [1,2].

The content of this paper is as follows. In Section 2, we es-
tablish a new alternative theorem for the robust linear inequality
system (SR) in which the dual statement can be checked by using
a semidefinite linear programming (cf. [7]). This is achieved by
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means of employing nice structures with linear matrix inequality
representations of the spectrahedral index sets (1.1) together with
a special variable transformation (cf. [7,16]), which paves the way
to present the dual statement in terms of linear matrix inequalities.
In Section 3, we apply the established alternative theorem to derive
a characterization of optimality for weakly Pareto solutions of a
robust linear multiobjective optimization problem, and to explore
weak, strong and converse duality relations in robust linear multi-
objective optimization. The reader is referred to [3,11,12] for some
duality results on linear/nonsmooth semi-infinite multiobjective
optimization problems with arbitrary index sets, and to [4,19]
for several results about optimality conditions and/or duality of
nonsmooth robust multiobjective optimization problems.

2. Robust alternative theorem for linear inequalities

Throughout the paper, for eachn € N, R" signifies the Euclidean
space whose norm is denoted by || - ||. The inner product in R"
is defined by (x,y) := x'y for all x,y € R". Given a nonempty
set £2 C R", the topological closure of £2 is denoted by cl £2, and
the convex conical hull of £2 is denoted by cone £2, i.e., cone 2 :=
R, conv £2, where conv £2 denotes the convex hull of 2 and R, :=
[0, +00) C R. A symmetric (n x n) matrix A is said to be positive
semi-definite, denoted by A > 0, wheneverx'Ax > Oforallx € R™.

The main result of this paper is stated as follows.

Theorem 2.1 (Robust Alternative Theorem). Let (g, 1) € R" %

R,l = 1,...,p, and let the cone C := cone] (a;(u;), b(u;)) | u; €
U,j=1,..., q] be closed. Assume that the robust linear inequality
system (SR) has a solution; i.e.,
X={xeR"|aqu) x <bjw), Vuyye Uy, j=1,...,q} #2.
Then, exactly one the following two statements holds:
MixeX|p'x<n I=1,...,p} #0; ‘
(i3 >0,l=1,....p, >0 v =1, 3/\0 > 0,4 €R,j =

1,...,q,i=1,.. ssuchthat

p q
Z i)+ Z (APa? + Z 0,
— Z i — Z )\.Obo Z Al bl
j=1

040 ipi ;
and )0A¢ +Zk}A}iO,]=l,...,q.

To prove this theorem, we need the following general version
of Farkas’s Lemma, which can be found in [ 14, Theorem 4.3.4].

Lemma 2.2 (Generalized Farkas). Let be given (b, r) and (s;, p;) in
R" x R, where j varies in an arbitrary index set J. Suppose that the
system of inequalities

s/x < pjforallje] (2.1)

has a solution x € TR". Then, the following two properties are
equivalent:

(i) b"x < r for all x satisfying (2.1);

(ii) (b, r) € cl cone{(0,, 1) U (s, pj) | j € J}.

Proof of Theorem 2.1. Let
S
(af + Z uja, by + ) uib))
i=1

|ujeuj,j=1,...,q}. (2.2)

C = cone{(O,,,l

We first note that the cone C is known as characteristic cone
(cf. [13]) and it is closed under our assumption as shown in the
proof of [7, Theorem 2.1].

[Not (i) = (ii)] Assume that (i) fails. Then, let x € X. There
exists Iy € {1, ..., p} such that

K’II X >
Now, invoking Lemma 2.2, we conclude that

(=1, —1ip) € dlC = C

Then, there exist Ao > 0, i; > 0, and u; = (u!

1, ..., gsuch that e
q s
= wila + ) uja)
j=1 i=1
q S . .
_rlo = )\Q =+ Z,u](bjo + Zu}b})
j=1 i=1

u) € U, j =

—&ly

Putting v, = 1,v = 0forl € {1,....p} \ {bo}, and kj‘.] =
Wi > O,A} = /leljl- eR,j=1,...,q,i = 1,...,s, we see that
>¥ v =1land

P q s

D v+ Y (Wad + Y Md) =

I=1 =1 i=1

p q

> vmt o+ Yy (0 + Z bl =

=1 j=1
The later equality means that —) 7  vn 0D+

doiAb) =0 > 0.
Consider j € {1,..., q} arbitrary. The relation u; € U; ensures

that A? + >0, uiAl = 0. We will verify that

N
MWAY+ " AAl > 0. (2.3)

Indeed, ifkf = 0, then }\; =0foralli=1,...,
holds trivially. If ) # 0, then

Lo SUM
0,0 __ 10 0 J
WA+ DA =4 (Aj + Z Mﬂ“;")
i=1 i
=20 <A°+Zu'A>

showing (2.3) holds, too. Consequently, (ii) is valid.
[(ii) = Not (i)] Assume that (ii) holds. It means that there

s, and hence, (2.3)

exist yy > 0,1 = 1,....,p,Y 0w = 1,A) = 0\ €
R,j = ],...,q,i = 1,...,ssuchthath 1v1591+2;’ ; AQ Q—i—
YiaMa) = = Xlovin = XL090) + YA >
Oand/\oAO + Zl MAL =0, = l,...,q. By letting p =
v T Y ko = =3 vn — 3LG7b) +
Z, l)L]bj’) we obtain that Ao > 0 and that

q s

—p =) (§d) + ) _Aa)
= = (2.4)

—r—/\0+2 (A9 + be'
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