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a b s t r a c t

We investigate a threshold reservation policy implemented within a single customer’s class. From an
explicit performance analysis, we prove that the potential of reservation is into the reduction of the
balking effect together with a higher server’s utilization. However, it also may result in a higher expected
waiting time and more abandonment. We conclude that reservation can be efficiently implemented in
large systems, under high workload situations, with a low waiting aversion and a low impatience.

© 2017 Elsevier B.V. All rights reserved.

1. Introduction

In a systemwhere all resources are occupied, the service of new
arriving customers has to be delayed. The waiting aversion leads
some customers to reconsider asking for service in case of a non-
immediate service. This phenomenon is referred to as the balking
effect. Balking can be significant in situations where customers
know that they can easily find a similar service elsewhere, eventu-
ally without wait. For instance in a street with many restaurants,
a significant proportion of customers may refuse waiting for an
available table if they can find another one elsewhere. Another
example is call centers; [4] shows that the balking phenomenon
results in a significant loss of customers.

Since the loss of customers is undesirable, it may be useful to
develop strategies which allow the service provider to maintain
an amount of resource availability if preemption is not possible.
In a context where a unique group of servers has to serve urgent
and non-urgent customers, it has been shown that a reservation
strategy can significantly improve the service level of urgent cus-
tomers. The idea of a reservation strategy is to force some servers
to remain available for new arriving urgent customers even if some
non-urgent customers are waiting. This strategy is sometimes im-
plemented in health care systems (see [6]) and in call centers with
inbound and outbound calls (see [9]).

An important stream of literature is devoted to the analysis
of such reservation strategies with two customer’s classes. These
strategies are referred to as blending policies. Some papers focus on
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performance evaluation, and others address the analysis of blend-
ing policies or staffing decisions. [5] develops various continuous
Markov chain models for a call center with inbound and outbound
calls. The authors consider a threshold policy and characterize the
rate of outbound calls and thewaiting time distribution of inbound
calls. Other papers address the analysis of reservation policies. [7]
and [2] prove that a threshold policy on the number of idle agents
is optimal to maximize the outbound throughput under a service
level constraint on the inbound waiting time. Similar results are
also found in [13], for a non-stationary model where inbound
calls arrive according to a non-homogeneous Poisson process or
in [14] in a setting with a callback option. [15] considers a large
call center with a reservation model and propose a logarithmic
safety staffing rule, combined with a threshold control policy to
ensure that agents’ utilization is always close to one with always
idle agents present.

In a broader perspective, reservation is the idea that some
resources should remain idle when some work is available. For
instance in a context with heterogeneous servers and the objec-
tive to minimize the time spent in the system, it is optimal to
consider non-work conserving policies where slow servers are
used only if the queue length exceeds some given thresholds. A
large literature investigates this question through the so-called
‘‘slow-server’’ problem (e.g., see [11,12,16]). Other illustrations are
overflow policies where agents are initially reserved for only one
customer type but can treat another customer type in case of high
congestion (e.g., see [1,10]). When there is a switching time or a
switching cost to change the job type in service, it may also be
preferred for a server to remain idle and ready to serve the same job
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(a) s = 10. (b) s = 100.

Fig. 1. P as a function of c (µ = 1, λ = sµ).

type instead of serving the other job type. For this purpose, cycling
reservation strategies are studied (e.g., see [3,17]).

The particularity of our article compared to the existing ones
on the same subject is to consider a threshold reservation strategy
with a unique class of customers who may balk. The choice for a
reservation threshold policy follows from the knowledge that this
type of policies outperforms randomized policies since they take
into account the system state. In addition, threshold policies are
deterministic; for each state there is a unique action. This makes
these policies easy to implement in practice. Finally, threshold
policies are controlled by only one parameter which also makes
them possible to analyze and implement.

We choose to adapt the threshold policy developed in the call
blending references for a unique class of customers. We consider
a multi-server single queue with infinite capacity and s identi-
cal, parallel servers. The arrival process of customers is Poisson
with rate λ. Service times are independent and exponentially dis-
tributed with rate µ. At a customer’s arrival, if at least one server
is available then this customer is directly served, otherwise with
probability r he/she accepts waiting and is routed to a first-come-
first-served queue. The reservation policy is of threshold type. We
define a threshold c on the number of servers. After a service
completion, if the number of busy servers is higher than or equal to
s− c then no customer is routed to service. Otherwise, if the queue
is non-empty then the first customer in line is routed to service.
In other words, c servers are reserved for new arriving customers
(0 ≤ c < s).

The objective of this article is to evaluate the performance
of this system and determine the effect of reservation on the
proportion of lost customers and on the waiting time. The idea
is to show the motivations and the risks in implementing such a
policy. In Section 2, we present theMarkov chain associated to this
system and develop a method to obtain the explicit expressions
of the stationary probabilities. Section 3 is devoted to the impact
of reservation on balking. We prove that reservation can reduce
the proportion of lost customers. This might be unexpected by
service providers. By forcing some servers not to work, the overall
productivity may increase. The improvement can be significant
in large systems, under high workload situations and with a low
customers’ waiting aversion. In Section 4, we develop a method
to compute the Laplace–Stieltjes Transform (LST) of the waiting
time distribution of an arriving customer. This allows us to obtain
explicit expressions of the first and secondmoments of thewaiting
time. As expected, although reservation helps to reduce the proba-
bility of delay, it deteriorates the expected waiting time due to the
existence of situationswhere a servermay remain idlewhile a cus-
tomer is waiting. In addition, in Section 5we include abandonment
in the model. From a numerical analysis, we show that reservation
may be counterproductive if customers’ impatience is high.

2. Stationary probabilities

In this section, we derive explicitly the stationary probabilities.
The system is modeled using a two dimensional continuous-time
Markov chain.We denote by (x, y) a state of the system for 0 ≤ x ≤

s and y ≥ 0, where x represents the number of busy servers and y
represents the number of customers in the queue. The state space
S is S = {(0, 0), (0, 1), . . . , (0, s)}∪{s−c, s−c+1, . . . , s}×N∗. We
denote by px,y the stationary probability to be in state (x, y) and by
a the ratio λ/µ.

We next describe the 4 possible transitions in theMarkov chain.

1. An arrival with rate λwhile a server is available (0 ≤ x < s),
which changes the state to (x + 1, y). The number of busy
server is increased by one.

2. An arrival with rate rλ while all servers are busy (x =

s), which changes the state to (x, y + 1). The number of
customers in the queue is increased by 1.

3. A service completion with rate (s − c)µ while the queue is
not empty (y > 0) and the number of busy servers is equal
to s − c (x = s − c), which changes the state to (x, y − 1).
The number of customers in the queue is reduced by 1.

4. A service completion with rate min(s, x)µ while the queue
is empty (y = 0) or the queue is not empty but the number
of busy servers is strictly higher than s−c (x > s−c , y > 0),
which changes the state to (x − 1, y). The number of busy
servers is reduced by 1.

The Markov chain is depicted in Fig. 1 of Section 1 of the online
supplement. In Theorem1,we give the stationary probabilities and
the stability condition. The proof of Theorem 1 is given in Section
2 of the online supplement.

Theorem 1.Under the stability condition r (s−c−1)!
s! ac+1 < 1, we have
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for s − c ≤ x ≤ s, y > 0, with
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