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a b s t r a c t

We study the empirical likelihood approach to construct confidence intervals for the optimal value
and the optimality gap of a given solution, henceforth quantify the statistical uncertainty of sample
average approximation, for optimization problems with expected value objectives and constraints where
the underlying probability distributions are observed via limited data. This approach relies on two
distributionally robust optimization problems posited over the uncertain distribution, with a divergence-
based uncertainty set that is suitably calibrated to provide asymptotic statistical guarantees.
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1. Introduction

We consider a stochastic optimization problem in the form

min
x∈Θ

{h(x) := E[H(x; ξ)]}, (1)

where x = (x1, . . . , xp) is a continuous decision variable in
the deterministic feasible region Θ ⊆ Rp, and ξ is a random
vector on Rd. We are interested in situations where the underlying
probability distribution that controls the expectation E[·] is not
fully known and can only be accessed via limited data ξ1, . . . , ξn. It
is customary in this setting to work on an empirical counterpart of
the problem, namely by solving the sample average approximation
(SAA) (e.g., [13]):

min
x∈Θ

1
n

n
i=1

H(x; ξi). (2)

We further consider problems with expected value constraints,
in the form

min h(x) = E[H(x; ξ)]
subject to fk(x) = E[Fk(x; ξ)] ≤ 0, k = 1, . . . ,m

gk(x) ≤ 0, k = 1, . . . , s
(3)
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where gk(·)’s are deterministic functions. Thus (3) can include both
stochastic and deterministic constraints. Again, under limited data
ξ1, . . . , ξn, an SAA version of (3) is (e.g., [14])

min
1
n

n
i=1

H(x; ξi)

subject to
1
n

n
i=1

Fk(x; ξi) ≤ 0, k = 1, . . . ,m

gk(x) ≤ 0, k = 1, . . . , s.

(4)

Our premise is that beyond the n observations, new samples
are not easily accessible because of either a lack of data or limited
computational capacity in running furtherMonte Carlo simulation.
The optimal value and solution obtained from (2) or (4) thus
deviate from those under the genuine distribution in (1) or (3).
Moreover, the error of the solution implies a non-zero optimality
gap with the true optimal value, resulting in suboptimal decisions.
Estimating these errors is important and has been studied over the
years (e.g., [7,9], Chapter 5 in [13]).

Our main contribution is to bring in a new approach to rigor-
ously quantify the uncertainty in (2) and (4) through constructing
confidence intervals (CIs) for the true optimal value and the op-
timality gap for a given solution. The machinery underlying our
framework uses the so-called empirical likelihood (EL) method
in statistics, and culminates at a reformulation of the problem of
finding the upper and lower bounds of a CI into solving two op-
timization problems that closely resemble distributionally robust
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optimization (DRO). The uncertainty set in theDRO is a divergence-
based ball cast over an uncertain probability distribution, where
the size of the ball is suitably calibrated so that it provides asymp-
totic guarantees for the coverage probability of the resulting CI.

We study the theory giving rise to such guarantees. We
demonstrate through several numerical examples that ourmethod
compares favorably with some existing methods, such as bounds
using the central limit theorem (CLT) and the delta method, in
terms of finite-sample performance. In the remainder of this
paper, Sections 2 and 3 study the theory of our approach applied
to the optimal value and the optimality gap, and our online
Supplemental material (see Appendix B) shows the numerical
results and comparison with previous methods.

2. The empirical likelihood method for constructing confi-
dence bounds for optimal values

This section studies in detail the EL method in constructing
CIs for the optimal values. Section 2.1 focuses on (1) that only
has deterministic constraints, and Section 2.2 generalizes to the
stochastically constrained case (3).

2.1. Deterministically constrained optimization

Let us first fix some notations. Given the set of i.i.d. data
ξ1, ξ2, . . . , ξn, we denote a probability vector over {ξ1, . . . , ξn} as
w = (w1, . . . , wn) ∈ Rn, where

n
i=1 wi = 1 and wi ≥ 0

for all i = 1, . . . , n. We denote χ2
q,β as the 1 − β quantile of a

χ2 distribution with degree of freedom q. We use ‘‘⇒’’ to denote
convergence in distribution, and ‘‘a.s.’’ to denote ‘‘almost surely’’.

Our method utilizes the optimization problems

max
w

/min
w

min
x∈Θ

n
i=1

wiH(x; ξi)

subject to −2
n

i=1

log(nwi) ≤ χ2
p+1,β

n
i=1

wi = 1

wi ≥ 0 for all i = 1, . . . , n

(5)

where ‘‘max /min’’ denotes a pair of maximization and minimiza-
tion. Note that the optimal value of the SAA problem (2) lies be-
tween those of (5).

The quantity −(1/n)
n

i=1 log(nwi) can be interpreted as
the Burg-entropy divergence [12,2] between the probability
distributions represented by the weights w and by the uniform
weights (1/n)i=1,...,n on the support {ξ1, . . . , ξn}. Thus, the first
constraint in (5) is a Burg-entropy divergence ball centered at the
uniform weights, with radius χ2

p+1,β/(2n). From the viewpoint of
DRO (e.g., [4,2,15]), the optimization problems in (5) output the
worst-case estimates of minx∈Θ{h(x) = E[H(x; ξ)]} when E[·] is
uncertain and its underlying distribution is believed to lie inside
the divergence ball. We should point out, however, that this DRO
interpretation differs from those in the existing literature (e.g., [3]),
as our divergence ball (i.e. the ‘‘uncertainty set’’ in the terminology
of robust optimization) may have low coverage of the true
distribution P . This can be seen particularly when P is a continuous
distribution, in which case the coverage of the divergence ball
is zero because of the violation of the absolute continuity
requirement needed in properly defining the divergence.

The EL method is a mechanism to endow statistical meaning to
(5). In particular, it asserts that using the ball size χ2

p+1,β/(2n) in
(5) gives rise to statistically valid 1 − β confidence bounds for the
optimal value of (1) (despite that the ballmay under-cover the true

distribution). This method originates as a nonparametric analog
of maximum likelihood estimation first proposed by [10]. On the
data set {ξ1, . . . , ξn}, we first define a ‘‘nonparametric likelihood’’n

i=1 wi, where wi is a probability weight applied to each datum.
It is straightforward to see that the maximum value of

n
i=1 wi,

among all w in the probability simplex, is
n

i=1(1/n). In fact, the
same conclusion holds even if one allows putting weights outside
the support of the data, which could only make the likelihoodn

i=1 wi smaller. In this sense,
n

i=1(1/n) can be viewed as a
maximum likelihood in thenonparametric space. Correspondingly,
we define the nonparametric likelihood ratio between the weights
w and the maximum likelihood weights as

n
i=1 wi/

n
i=1(1/n) =n

i=1(nwi).
The key of the EL method is a nonparametric counterpart of the

celebratedWilks’ Theorem [16] in parametric likelihood inference.
The latter states that the ratio between the maximum likelihood
and the true likelihood (the parametric likelihood ratio) converges
to a χ2-distribution in a suitable logarithmic scale. To develop this
analog, we first incorporate a target parameter of interest, i.e. the
quantity whose statistical uncertainty is to be assessed (or to be
‘‘estimated’’). Say this parameter is θ ∈ Rp. Suppose the true
parameter is known to satisfy the set of equations E[t(θ; ξ)] = 0
where E[·] is the expectation for the random object ξ ∈ Rd, and
t(θ; ξ), 0 ∈ Rb. We define the nonparametric profile likelihood
ratio as

R(θ) = max


n

i=1

nwi :

n
i=1

wit(θ; ξi) = 0,

n
i=1

wi = 1, wi ≥ 0 for all i = 1, . . . , n


(6)

where profiling refers to the categorization of all weights that
respect the set of equations E[t(θ; ξ)] = 0.

With the above definitions, the crux is the empirical likelihood
theorem (ELT):

Theorem 1 (Theorem 3.4 in [11]). Let ξ1, . . . , ξn ∈ Rd be i.i.d. data.
Let θ0 ∈ Rp be a value of the parameter that satisfies E[t(θ; ξ)] = 0,
where t(θ; ξ), 0 ∈ Rb. Assume the covariance matrix Var(t(θ0; ξ))
is finite and has rank q > 0. Then −2 logR(θ0) ⇒ χ2

q , where R(θ)
is defined in (6).

The quantity−2 logR(θ) is defined as∞ if the optimization in
(6) is infeasible.

We now explain how (5) provides confidence bounds for
optimization problem (1). We make the following assumptions:

Assumption 1. 1. h(x) is differentiable in x with ∇xh(x) =

E[∇xH(x; ξ)] for all x ∈ Θ .
2. x∗

∈ argminx∈Θh(x) if and only if ∇xh(x∗) = 0. Moreover,
this relation is distributionally stable, meaning that x̃∗

∈

argminx∈Θ h̃(x) if and only if ∇xh̃(x̃∗) = 0 for any h̃(x) =

Ẽ[H(x; ξ)] that has the expectation Ẽ[·] generated under an
arbitrary distribution P̃ such that

sup
x∈Θ

|h̃(x) − h(x)| < ϵ

for small enough ϵ > 0.
3. There exists an x∗

∈ argminx∈Θh(x) such that the covariance
matrix of the random vector (∇xH(x∗

; ξ),H(x∗
; ξ)) ∈ Rp+1 is

finite and has a positive rank.
4. 1

n

n
i=1 H(x; ξi) → h(x) uniformly over x ∈ Θ a.s..

5. E

supx∈Θ H(x; ξ)2


< ∞.
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