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a b s t r a c t

A hierarchy of semidefinite programming (SDP) relaxations is proposed for solving a broad class of hard
nonconvex robust polynomial optimization problems under constraint data uncertainty, described by
convex quadratic inequalities. This class of robust polynomial optimization problems, in general, does not
admit exact semidefinite program reformulations. Convergence of the proposed SDP hierarchy is given
under suitable and easily verifiable conditions. Known exact relaxation results are also deduced from
the proposed scheme for the special class of robust convex quadratic programs. Numerical examples are
provided, demonstrating the results.

© 2017 Elsevier B.V. All rights reserved.

1. Introduction

In this paper we consider the robust polynomial optimization problem,

(RP) min
x∈Rn

f (x)

subject to g0
i (x) +

s
j=1

uj
ig

j
i (x) ≤ 0, ∀ui = (u1

i , . . . , u
s
i ) ∈ Ui, i = 1, . . . ,m,

where the objective function f and the constraint functions g j
i are all polynomials on Rn. Here, ui = (u1

i , . . . , u
s
i ), i = 1, . . . ,m, are the

uncertain parameters and each ui belongs to the uncertainty set Ui described by convex quadratic inequalities:

Ui :=


ui ∈ Rs

:
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uT
i B

l
iui + (bli)

Tui + β l
i ≤ 0, l = 1, . . . , q


, (1)

with positive semidefinite (s × s) symmetric matrices Bl
i, b

l
i ∈ Rs, β l

i ∈ R, i = 1, . . . ,m, l = 1, . . . , q. It is a robust counterpart of the
polynomial optimization (POP) with constraint data uncertainty of the form

(POP) min
x∈Rn

f (x)

subject to g0
i (x) +

s
j=1

uj
ig

j
i (x) ≤ 0, i = 1, . . . ,m.

Note that we assume that the objective function f is free of uncertainty because the uncertainty in the objective can be converted to the
form of (RP) by introducing additional variables [1].
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The robust problem (RP) covers a broad class of robust optimization problems because many commonly used uncertainty sets, such as
ball and box uncertainty sets as well as the intersection of ellipsoidal uncertainty sets, discussed in the literature [1], can be expressed in
terms of convex quadratic inequalities. A successful treatment for the special case of (RP), where f and g j

i are linear, or convex quadratic
functions, has already been given in the literature [1,2,5] with the focus on reformulating them as equivalent semidefinite programming
problems (SDPs). Exact SDP relaxations are also known in the literature for robust SOS-convex programming problems under various
classes of uncertainty sets [9,10].

Unfortunately, the robust optimization problem (RP) is, in general, a very hard problem numerically and does not admit an exact
reformulation to a semidefinite linear programming problem because finding a global solution of (RP) is an NP-hard problem even in the
case where the polynomials are general convex polynomials [5] and the uncertainty sets are ellipsoids. Moreover, the underlying global
polynomial optimization problem without uncertainty is already known to be a hard problem to solve numerically [6,16,15]. To our best
knowledge, a study of solving the general robust polynomial optimization problem (RP) under constraint data uncertainty does not appear
to be available in the literature [3,1]. For a recent related contributionwhere the uncertainty occurs only in the objective function, see [15].

The purpose of this paper is to propose ‘‘numerically tractable’’ convergent SDP approximation schemes for (RP) by employing powerful
semi-algebraic representation result, known as Putinar’s theorem. We show that a convergent hierarchy of SDP relaxations holds for
(RP), which, in particular, also applies to the corresponding known NP-hard problems with the intersection of ellipsoidal uncertainty.
We provide numerical examples including an example with 20 variables illustrating our main result. We also discuss the scalability and
implementability of our approach for larger size problems in Remark 2.1. We prove that the optimal values of the SDP relaxations to
(RP) converge to the global optimal value of (RP). We also show how known exact relaxation results can be deduced from the proposed
hierarchical relaxation scheme for special classes of robust convex quadratic programs.

Throughout this paper, we assume that the feasible set of (RP) is nonempty, and the problem (RP) is regular, that is, there exists one
function p = µ0f +

m
i=1 µi(g0

i +
s

j=1 û
j
ig

j
i ), for some (û1

i , . . . , û
s
i ) ∈ Ui,µi ≥ 0, i = 0, 1, . . . ,m and

m
i=0 µi = 1, such that p is coercive

in the sense that lim∥x∥→∞ p(x) = +∞. We note that this regularity assumption not only guarantees that a global solution for (RP) exists
but also can easily be numerically checked for polynomial optimization problems (see for example, [7,8]).

The outline of the paper is as follows. Section 2 defines a hierarchy of SDP relaxations for robust polynomial problems under uncertainty
sets that are described by convex quadratic inequalities and establishes its convergence. Section 4 concludes the paper and presents some
future research topics.

2. Convergent relaxations & intersection of ellipsoidal uncertainty

In this section, we propose a sequential SDP relaxations for (RP) and establish its convergence under suitable assumptions.
We begin this Section by recalling some basic notations for matrices. We denote Sn the space of symmetric n × n matrices with the

trace inner product given by ⟨A, B⟩ = Tr[AB] =


1≤i,j≤n AijBij, and ≽ denotes the Löwner partial order of Sn, that is, forM,N ∈ Sn,M ≽ N
if and only if (M − N) is positive semidefinite. In particular,M ≽ 0 means thatM is positive semidefinite. Let Sn

+
:= {M ∈ Sn : M ≽ 0} be

the closed convex cone of positive semi-definite n × n (symmetric) matrices, equipped with the trace inner product. The Frobenius norm
of a matrix M is denoted by ∥M∥F and is defined as ∥M∥F =


1≤i,j≤n M

2
ij . Let a = (a1, . . . , an) ∈ Rn. We use diag(a) to denote the

diagonal (n × n) matrix whose ith diagonal elements equals to ai, i = 1, . . . , n. Moreover, the (n × n) identity matrix is denoted by In.
We also recall some basic definitions for polynomials. We say that a real polynomial f is sums-of-squares (cf. [16]) if there exist real

polynomials fj, j = 1, . . . , r , such that f =
r

j=1 f
2
j . The set consisting of all sum of squares real polynomials in the variable x is denoted

by Σ2
[x]. Moreover, the set consisting of all sum of squares real polynomials with degree at most d is denoted by Σ2

d [x]. For a polynomial
f , we use deg f to denote the degree of f .

Recall [16, Definition 2.2] that a symmetric matrix polynomial U ∈ R[x]m×m, x ∈ Rn, is said to be an SOS-matrix polynomial if there
exists a possibly non-square matrix polynomial W (x) with m columns such that U(x) = W (x)TW (x). Denote MΣ2

[x] (more explicitly,
MΣ2

m[x]) the set of all symmetric polynomial in R[x]m×m. Clearly, if U ∈ MΣ2
[x] then, for each x ∈ Rn, U(x) is a positive semidefinite

symmetric matrix. Note that there exist some different notions of SOS-matrix polynomial in the literature [14].
The followingmatrix Putinar’s theorem [19, Corollary 1] provides a representation for positivity of a real polynomial over a set described

by a polynomial matrix inequality. This result will play a key role in our convergence proof of the semi-definite programming relaxation
scheme later in this section.

Lemma 2.1 (Matrix Putinar’s Theorem cf. [19]). Let f be a real polynomial on Rn. Let K = {x ∈ Rn
: G(x) ≽ 0} where G : Rn

→ Sq is a
matrix polynomial. Suppose that {x ∈ Rn

: p(x) ≥ 0} is compact for some polynomial p such that p = σ 0 + ⟨R,G⟩, where σ 0 is a sum-of-
squares polynomial and R is a sum-of-squares matrix polynomial. If f is positive over K , then there exist sums-of-squares polynomial σ0 and a
sums-of-squares matrix polynomial R : Rn

→ Sq such that f = σ0 + ⟨R,G⟩.

Throughout this section, we use the following assumptions:

Assumption 2.1. We assume thatUi satisfies the Slater condition, i.e., there exists ũi ∈ Ui such that 1
2 ũ
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1, . . . , q, i = 1, . . . ,m, and (RP) is regular, that is, there exists a function
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for some ûi = (û1
i , . . . , û

s
i ) ∈ Ui, µi ≥ 0, i = 0, 1, . . . ,m and

m
i=0 µi = 1 such that p is coercive in the sense that lim∥x∥→∞ p(x) = +∞.
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