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a b s t r a c t

In this paper we study the behavior of a variant of the Max–Min Ant System algorithm when applied to
a stochastic Linear Pseudo-Boolean Optimization problem. Previous related work is on a partial analysis
of its performance on a different problem. Here, we carry out its complete performance analysis giving a
bound on its average runtime using drift analysis. For the purpose, we give a new drift theorem and use
it to analyze the algorithm when applied to our problem.

© 2017 Published by Elsevier B.V.

1. Introduction

Drift analysis is an increasingly popular technique for the run-
time analysis of randomized search algorithms [25,5,6]. Several
variants based on variable drift theorems have already been pro-
posed, for instance in [22,18,3]. Here, we set out to use the drift
analysis method to analyze the behavior of an Ant Colony Op-
timization (ACO) algorithm when applied to the Linear Pseudo-
BooleanOptimization (LPBO) problem. The choice of this algorithm
is due to it being a powerful bio-inspired meta-heuristic. It was
first described in [7]. ACO is inspired by the complex behavior of
ant colonies which exhibit the so called swarm intelligence. This
emergent intelligence results from the simple behavior of individ-
ual ants which, using pheromone as an indirect communication
mechanism, confer to the colony a complex behavior on par with
that of higher level organisms. It has been applied successfully to a
wide range of problems arising in combinatorial aswell as stochas-
tic, dynamic and continuous optimization, [8,20]. Herewe consider
the Single-Destination Shortest Path (SDSP) problem.When the al-
gorithm is not directly applicable to a given problem, the latter is
transformed to SDSP.
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In general, ACO algorithms are used when a solution is made
up of many components; artificial ants then build solutions by
successively selecting appropriate components. Pheromone is
added to components that often belong to good solutions, while
it evaporates from others. The amount of the pheromone update
is controlled by the so-called evaporation factor ρ; when set low,
it leads to a slower but wider coverage of the search space. This
usually allows for better solutions to be found but at the cost of a
longer runtime.

There are several papers which analyze the behavior of ACO
algorithms. The first study is on proofs of convergence [11,12].
Recent advances concern the runtime of ACO algorithms when
applied to combinatorial problems such as the Minimum Span-
ning Tree (MST) [23], TSP [19], SDSP [9] and Pseudo-Boolean func-
tions [20].

In this paper, we are particularly interested in the work of [9]
which is concerned with analyzing the performance of a new ver-
sion of MMAS called MMAS-fp-norm, when applied to SDSP. Ac-
cording to [9], MMAS-fp-norm compares well with other variants
ofMMAS from an experimental point of view. But, their theoretical
study focuses mainly on getting an upper bound on the expected
first hitting time. This is not sufficient; a definite conclusion on the
performance of MMAS-fp-norm is therefore still lacking due to the
missing lower bound which allows to conclude on the bad perfor-
mance of the algorithm contrary to the upper bound which only
allows to conclude on its good performance. Here, we endeavor to
fill this gap focusing on the study of the MMAS-fp-norm algorithm
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performance when applied to the stochastic version of LPBO. The
latter is first converted into a stochastic SDSP problem, thenwe an-
alyze and derive a lower bound on the average runtime of MMAS-
fp-norm and improve the upper bound given in [9]. As will be seen
later, (Section 4.4), the analysis of LPBO is a convenientway tomea-
sure the strength and weakness of a given ACO-type algorithm.

The transformation of stochastic LPBO to stochastic SDSP results
in a general form of the model as given in [20]. Experiments
have shown that ACO algorithms can be particularly effective on
problems involving uncertainty [1]. The first results in this field
are given in [13,14], where a formal analysis of ACO algorithms has
been provided and its convergence to the desired solution shown.
In [10] it has been shown that ACO is robust even for an arbitrarily
large noise in the fitness function. In [5,17] a rigorous analysis of
the expected runtime of some variants of MMAS when applied to
stochastic problems, is given.

Here, we analyze a MMAS-fp-norm algorithm which is based
on a fitness proportional pheromone update, when applied to
the general case of the LPBO problem defined on binary strings
of length n. This scheme has been used in practice [26]. In each
iteration, the amount of updated pheromone always depends on
the quality of the new solution, and not the best-so-far solution
by contrast to other algorithms. This mechanism uses an implicit
averaging to find the best solution.

For the mathematical analysis, we propose a new variant of
the variable drift theorem which we prove using the general drift
theorem given in [21]. It is a generalization of drift theoremswhich
can be found in the literature, as in [22,18,4], for the upper bound
and [16,3,27,2], for the lower bound. The process corresponding to
the MMAS algorithm applied to LBPO on a stochastic graph takes
continuous values. As the pheromone level is updated with the
results of random fitness evaluations, uncountably many different
pheromone values are possible in each iteration.

The paper is organized as follows. In Section 2, we present a
variable drift theorem which gives a lower bound on the expected
first hitting time. We define formally the considered problem and
the algorithm to solve it in Section 3. In Section 4, we present
our results on the runtime of MMAS-fp-norm. Section 5 is the
conclusion and further work.

2. The variable drift theorem

This theorem, already mentioned above and used to establish
the main results of this paper, is given here first. Before that,
however, we first recall the theorem below, (part of Theorem 2
in [21]).

Assume that the stochastic process (Xt)t≥0 is reduced to its
natural filtration Ft := (X0; . . . ; Xt), i.e., the information available
up to time t and let the first hitting time T = min {t|Xt = 0}. Let
1Xt = Xt − Xt+1.

Theorem 1 (General Drift, [21]). Let (Xt)t≥0, be a stochastic process
over a state space S = {0} ∪ [xmin, xmax], where xmin > 0. Further-
more, let h : [xmin, xmax] −→ R+ be a continuous function and de-
fine g : S −→ R≥0 by g(x) := xmin

h(xmin)
+
 x
xmin

1
h(y)dy for x ≥ xmin

and g(0) = 0. Then for Xt ≥ xmin, if E (1Xt |Ft) < h(Xt) and
E (1g(Xt)|Ft) < αl for some αl > 0, then

E (T |X0) >
g(X0)

αl
.

This drift theorem is too complicated to apply directly. Some
additional assumptions are needed. The difficulty is in finding
assumptions which must not only be satisfied by the problem
studied, but also allow us to find parameter-free bounds αu and
αl. However, it can be applied with a different distance g . In some
cases, a different distance is more appropriate as in [15]. Consider
Theorem 2, which uses the assumption of continuity of function h.

Theorem 2. Let (Xt)t≥0, be a stochastic process over a state space
S = {0} ∪ [xmin, xmax], where xmin > 0. Assume that for Xt ≥ xmin
there exist two continuous functions d1 and d2 such that d1(Xt) ≤
1Xt ≤ d2(Xt) and h, h+ and h− be the continuous functions on [xmin,

xmax] toR+ such that, if E (1Xt |Ft) ≤ h(Xt), E

1Xt1{Xt≥Xt+1}|Ft


≤

h+(Xt), E

1Xt1{Xt<Xt+1}|Ft


≤ h−(Xt) and αl > 0 such that

αl ≥ sup
u∈[xmin,xmax]

 h+(u)
inf
v∈J

h(v)
+

h−(u)
sup
v∈J

h(v)

 ,

for J = {v ∈ [xmin, xmax] : d1(u) ≤ u− v ≤ d2(u)}, then we have

E (T |X0) ≥
g(X0)

αl
.

Proof. Since h is a continuous function then g ∈ C1([xmin, xmax]).
Using themean value theoremwith g ′(x) = 1/h(x) for all x, we get

y− x
sup
[x,y]

h(t)
≤ g(y)− g(x) ≤

y− x
inf
[x,y]

h(t)
,

where x, y ∈ [xmin, xmax]with x ≤ y. Thus, with Xt > 0 we get

E (1g(Xt)|Ft; Xt = u)

≤
h+(u)
inf
y∈J

h(v)
+

h−(u)
sup
y∈J

h(v)

≤ sup
u∈[xmin,xmax]

 h+(u)
inf
y∈J

h(v)
+

h−(u)
sup
y∈J

h(v)


which gives the results after applying Theorem 1. �

Note that the above theorem can also be applied if the
probability 1 − Pr (J) is negligible. It has two characteristics. The
first is that there are few constraints to satisfy, apart from the
assumption of continuity, such as the constraint of the slowly
changing process according to the search space which is necessary
for its successful use in ACO-type Algorithms for instance. The
second is that it gives a lower bound on the expected hitting
time: there are fewer drift theorems for the lower bound than
for the upper bound, (see [21]). However, these theorems are
important to draw complete conclusions on the performance of a
given algorithm, if any.

3. Ant colony optimization algorithms

We first introduce the stochastic LPBO problem, formally. We
then present algorithm MMAS-fp-norm and explain how it can be
applied to this problem before fully analyzing it in Section 4.

3.1. Problem definition

Define a linear pseudo-Boolean function f as

∀x = (x1, . . . , xn)T ∈ {0, 1}n : f (x) =
n

i=1

wixi ∈ R,

with weights (wi)i=1,...,n ∈ R. We only consider positive weights
since a functionwith negative weightswi may be transformed into
a function with positive weights w′i = −wi by exchanging the
meaning of bit values 0 and 1 for bit i. The result is a functionwhose
value is increased by a larger additive term w′i . These exchange
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