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a b s t r a c t

In some optimization problems found in applications, the derivatives of the objective function can be
computed or approximated but at an expensive cost, and it is desirable to know when to use derivative-
free methods (such as direct search, for instance) or derivative-basedmethods (such as gradient or quasi-
Newton methods). Derivative-free methods may achieve a steady initial progress for some problems, but
after some advance theymay also become slower or even stagnate due to the lack of derivatives. It is thus
of interest to provide a way to appropriately switch from a derivative-free method to a derivative-based
one. In this paper, we develop a family of indicators for such a switch based on the decrease properties of
both classes of methods (typically used when deriving worst case complexity bounds).

Published by Elsevier B.V.

1. Introduction and basic concepts

The calculation of functions involved in optimization problems
appearing in computational sciences and engineering is frequently
based on numerical simulation. The smoothness of the function
and the access to whatever form of derivatives vary considerably
across applications. While there are problems of totally black-box
type where only function values can be computed in a certain
(sometimes unknown) feasible region, there are other more struc-
tured problems of continuously differentiable type where both
function values and gradients can be computed, an example of
special interest to us being the acoustic full-waveform inverse
problem in Earth imaging [11]. In such problems, the calculation
of the gradient may come at a cost higher than the one for the
function value, and such difference may depend on the dimension
of the problem and the accuracy required.

Although Derivative-Free Optimization provides now a the-
ory [1] to understandmodels and families of directions used in the
various classes of methods as well as their convergence properties,
a question that to our knowledge has never been addressed iswhen
should one switch from a derivative-free method to a derivative-
based one, when the gradient can be computed (or possibly ap-
proximated by finite differences). Such a general question can be
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posed in many different ways depending on the methods under
consideration, their costs per iteration, the computational budget
available, and the final accuracy desired for a solution. Other issues
like non-smoothness or local vs global optimization may also play
a relevant role when analyzing such an issue.

In this paper, we try to make a first contribution to the topic
by considering a continuously differentiable setting where the
gradient of the objective function f : Rn

→ R can be computed (or
possibly approximated by finite differences), and theminimization
of the function is unconstrained. The gradient of f will be consid-
ered Lipschitz continuous in Rn (or in a level set corresponding
to an initial iterate), with constant L∇f > 0. Our idea to develop
an indicator for the switch under consideration will be to form
appropriate ratios of lower bounds for the decreases attained in
successful iterations (involving the derivative-free method and
whatwould be expected for the derivative-based one). These lower
boundswill be the ones usedwhen derivingworst case complexity
bounds (WCC) or global rates for such methods, and we will try
to take advantage of the mismatches that appear in such bounds
with or without using derivatives. Our ultimate goal is to detect
a switch when not enough progress is being achieved compared
to the one that could be done if derivatives were available, letting
the derivative-freemethod continue otherwise (meaning to do not
switch).

To illustrate and test our ideas, we will consider the following
simple direct-search method which imposes a sufficient decrease
condition based on a quadratic forcing function. We consider an
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iteration uniquely defined by a poll stepwhich evaluates the objec-
tive function using a positive spanning set (PSS), i.e., a set of non-
zero vectors that spans Rn with non-negative coefficients.

Algorithm 1.1. Direct-search method (polling)
Initialization: Choose a PSS D, an initial point x0, and an initial

step size α0 > 0. The constants 0 < β < 1 ≤ γ are specified.
Set k = 0.

1. Poll step: Order the set of poll points Pk = {xk + αkd : d ∈ D}.
Start evaluating f at the poll points following the chosen order.
If a poll point xk + αkd is found such that f (xk + αkdk) <
f (xk)−α2

k/2, then set xk+1 = xk +αkdk and declare the iteration
successful. Otherwise, declare the iteration unsuccessful and set
xk+1 = xk.

2. Update iterate and step size: If the iteration was successful,
then maintain or increase the step size parameter: αk+1 ∈

[αk, γ αk]. Otherwise, decrease the step size parameter αk+1 =

βαk. Increment k by one and go to Step 1.

It is well known that such an algorithm is well defined (for
functions with Lipschitz continuous gradients) in the sense that
a successful iteration is found in a finite number of step-size
reductions [7]. In fact, it is possible to prove [7] that if the iteration k
is unsuccessful, then

∥∇f (xk)∥ ≤ cm(D)−1
(
L∇f

maxd∈D ∥d∥
2

+
1

2mind∈D ∥d∥

)
αk, (1)

where cm(D) is the cosine measure of the PSS D, defined as

cm(D) = min
0̸=v∈Rn

max
d∈D

v⊤d
∥v∥∥d∥

.

The cosinemeasure of a PSS is always positive. For instance, the PSS
D⊕ formed by the coordinate vectors and their negatives is such
that cm(D⊕) = 1/

√
n, and so is QD⊕ where Q is an orthogonal

matrix. Given an ϵ ∈ (0, 1), it is known that such an algorithm takes
at most O(nϵ−2) iterations and O(n2ϵ−2) function evaluations to
drive the normof the gradient below ϵ (see [10]).1 The dependence
of these WCC bounds on ϵ reduces to ϵ−1 if the function is convex
and to − log(ϵ) if the function is strongly convex (see [2]). These
bounds depend quadratically on the Lipschitz constant L∇f .

For the sake of simplicity, we take the gradient method with
backtracking as our derivative-based method.

Algorithm 1.2. Gradient method (backtracking)
Initialization: Choose initial point x0. Let c ∈ (0, 1) and b > 0 be

specified. Set k = 0.
1. Backtrack: Letαk be the first scalar in b, b/2, b/4, . . . such that

f (xk − αk∇f (xk)) ≤ f (xk) − cαk∥∇f (xk)∥2. (2)

2. Update iterate: Compute xk+1 = xk − αk∇f (xk). Increment k
by one and go to Step 1.

It is known that Algorithm 1.2 is well defined in the sense that
it is always possible to find αk of the form given in the algorithm
such that (2) is satisfied (see, e.g., [9]). Moreover, each iteration of
Algorithm 1.2 satisfies

f (xk) − f (xk+1) ≥ C∥∇f (xk)∥2, (3)

with

C = c max
(
1 − c
L∇f

, b
)

. (4)

1 The notationO(A) will mean a scalar times A, where the scalar does not depend
on the iteration counter of the method under analysis (thus depending only on the
problem or on algorithmic constants).

It is also well known (see [8]) that the WCC effort for the gradient
method (to reduce the norm of the gradient below ϵ) is of O(ϵ−2)
in general, reducing to O(ϵ−1) and O(− log(ϵ)) in the convex and
strongly convex cases, respectively. Note that these bounds depend
linearly on L∇f .

The remaining of this paper is organized in three sections. In
Section 2, we will describe our main idea to develop a family
of indicators for the switch from derivative-free to derivative-
based iterations using direct search and the gradient method as
motivation. Two concrete indicators are then proposed in Section 3
and their numerical performance (using Algorithms 1.1 and 1.2) is
reported. Finally, in Section 4, we will further discuss the scope of
our approach.

2. Elements for the indicators

At each iteration of a gradient-based method, one typically has

f (xk) − f (xk+1) ≥
G
L∇f

∥∇f (xk)∥2, (5)

where G > 0 is a fixed constant independent of f or of the
iteration counter. This is the case for the gradient method with
line search satisfying both Wolfe conditions (sufficient decrease
condition (2) and curvature condition), or for the gradient method
with backtracking line search imposing only the sufficient decrease
condition (2); (see Algorithm 1.2 and (3)–(4)).

At each successful iteration of a derivative-free method based
on sufficient decrease, one typically has

f (xk) − f (xk+1) ≥ D1 t2k ,

where D1 > 0 is a fixed algorithmic parameter independent of f
and of the iteration counter. The step-size parameter tk represents
the trust-region radius δk in derivative-free trust-region methods
or the step size αk in direct-search methods (see Algorithm 1.1). If
ℓ is an iteration where the step-size parameter tℓ is reduced (for
either class of methods), one has

∥∇f (xℓ)∥ ≤ D2(n)L∇f tℓ, (6)

where D2(n) > 0 is a fixed constant independent of f and of the
iteration counter (but typically dependent on n); see (1) for the
direct-search case and [3] for the trust-region one.

Let k be a given successful iteration and rk the last iteration
before k where the step size has been reduced. Let Ck be the set
of indices corresponding to successful iterations between rk and k
where some approximation to the gradient is known.

The decrease produced by a gradient-basedmethodwould have
been at least

f (rk) − f (xk+1) ≥

∑
j∈Ck

G
L∇f

∥∇f (xj)∥2. (7)

On the other hand, the decrease produced by a derivative-free
method would have been at least

f (rk) − f (xk+1) ≥

∑
j∈Ck

D1t2j ≥
D1|Ck|

D2(n)2L2∇f
∥∇f (xrk )∥

2. (8)

Establishing a ratio between the decreases in (8) with those in
(7), yields two quantities

D1L∇f
∑

j∈Ck
t2j

G
∑

j∈Ck
∥∇f (xj)∥2 and

D1|Ck|∥∇f (xrk )∥
2

GD2(n)2L∇f
∑

j∈Ck
∥∇f (xj)∥2 .

This motivates the introduction of the following two indicators

I1k =

∑
j∈Ck

t2j∑
j∈Ck

∥gj∥2 and I2k =
|Ck|∥grk∥

2∑
j∈Ck

∥gj∥2 (9)
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