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a b s t r a c t

We consider a full information duration problemwith random, unbounded horizon.We choose the object
and hold it as long as it will be relatively best or second best object.We show that the problem of stopping
on two first order statistics reduces to the problem on stopping only on the relatively best object. We
derive the optimal strategy and the value of the problem. The similarities between duration problem and
the best or second best choice problem are revealed.
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1. Introduction

Assume that at moment n we are interested in choosing rel-
atively best or second best object. The observations come from a
knowndistribution andweobserve its exact value. In the literature
is known as a class of full information stopping problems. We
choose the object and hold it as long as it will be relatively best
or second best object. The concept of duration of owning the
relatively best object was introduced by Ferguson, Hardwick and
Tamaki [3]. We observe sequentially X1, . . . , XN i.i.d. random vari-
ables with known distribution uniform on the interval [0, 1]. The
problem in this paper refers to themodels from the above article as
well as to the concept presented by Porosiński and Szajowski [13]
in the sense that the duration is based on the 1st and 2nd order
statistics. We consider a special case where N is a random variable
geometrically distributed, i.e.

P(N = k) = pk = pqk−1, 0 < p < 1; q = 1 − p, k = 1, 2, . . . .
(1)

The paper deals with generalization of the models mentioned.
Following Kurushima and Ano [1], we consider the problem of
stopping on the relatively best object.

1.1. Previous works

The optimal stopping problems with unbounded random hori-
zon are extension of the problems with finite horizon. In the
works by Gilbert and Mosteller [4] and Presman and Sonin [14],
it is observed that the optimal strategies could have unexpected
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forms. Generally, the topic can be divided into two groups: no-
information case and full-information case. Best choice prob-
lem for full-information case has been shown by Gilbert and
Mosteller [4]. In Porosiński [10], the idea of random discrete hori-
zon is applied. Petruccelli [9] allowed a backward solicitation in the
problem. The application of random horizon and its distribution
affects the reward function and the Markov chain in the stopping
problem (cf. Porosiński [11]). The duration of owning the best
object was presented by Ferguson, Hardwick and Tamaki [3]. The
explicit formulas for the optimal payoff function were given for
the duration problem by Mazalov and Tamaki [8]. Tamaki [21]
solved the problem of stopping on the relatively best object with
random horizon. This idea was applied to the geometrical horizon
by Porosiński, Skarupski and Szajowski [12]. Gnedin [5] used the
concept of geometrical horizon to find the rule for selection of an
increasing subsequence from a random sample. The similarities
between best choice problems and duration of owning the best
objects was recognized also by Gnedin [6]. Idea of stopping on the
relatively best and holding it as long as it will be best or second
best object in full information case was presented by Kurushima
and Ano [1]. In this work, the authors do not consider stopping on
the relatively second observation and they considered a problem
with a finite horizon.

A problem of stopping on the relatively best or second best
object when the number of objects is randomwas solved by Kawai
and Tamaki [7]. However, authors considered a problem where
the horizon variable N is bounded with probability one and they
focused on no-information case. A similar problemwas considered
by Tamaki [19]. The problem of stopping on the relatively best
object with randomhorizonwas solved by the same author in [20].
Although it was a great work on this topic, it does not consider
the cases with random unbounded horizon. There are examples of
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distributions of the horizon, but all of them are on finite support.
The most similar work to this one was done by Szajowski and
Tamaki [17] where the problem for no-information case was de-
scribed. Some results are also given by Tamaki [18]. An interesting
problem related to the duration problem with multiple stopping
was considered by Pearce Szajowski and Tamaki [22]. The problem
for full information best or second best choice problem when the
number of observations is finite and known remains unsolved.

1.2. The plan of the paper

The paper is organized as follows. In Section 2, we consider
a duration problem where it is allowed to stop only on the best
observations. The solution of this problem is presented in two
ways. In Section 3, we consider a problem where it is allowed to
stop on the best or second best object. We show that this problem
reduces to the previous one. Moreover, we compare the strategies
for two different problems: best-choice and duration.

2. Stopping on the relatively best object

Let Xn denote the value of the nth object. Let w(n, x) denote the
payoff function for stopping on the nth object whose value is x.
Moreover, let Tn be a random variable that denotes the moment
after time n when better observation occurs. The payoff is a time
period of owning the object as long as its range remains within 1
and 2. The duration is calculated as long as the rank of the object
will not be greater than 2 or as long as the time horizon will not
terminate.
w(n, x) = E[Tn − n|Xn = x]

=

∞∑
k=1
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(2)

where πk =
∑

∞

j=kpj = qk−1. Let Tw(n, x) denote the payoff when
the decision maker does not accept the relatively best applicant
whose value Xn = x is the maximum value among that of the
applicants arrived so far and accepts the next first relatively best
applicant. Then,

Tw(n, x) =
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∫ 1
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(3)

Denote G(n, x) := w(n, x) − Tw(n, x). The 1-Step-Look-Ahead
(1-SLA) rule is described as a set

B = {(n, x) : G(n, x) ≥ 0}. (4)

2.1. The first proof of the 1-SLA optimality

To show that 1-SLA rule is optimal, it is necessary to show two
statements: (i) G(n, x) ≥ 0 ⇒ G(n + k, x) ≥ 0, k = 1, 2, . . . and
(ii) G(n, x) ≥ 0 ⇒ G(n, y) ≥ 0, y ≥ x. Since the payoff does
not depend on n statement, (i) is obvious. It is enough to show the
second point. Consider a function g(x) := G(n, x). We show that if
g(x) ≥ 0 for some x, then the function will also be greater than 0
for y > x. It is equivalent to the ascertainment that if for some x
holds the inequality

3 − 2
1 − q
1 − qx

− log
(1 − qx
1 − q

)2
≥ 0, (5)

then it holds for all y > x. Calculate the derivative with respect to
x of the LHS of (5). It is equal to

− 2q(1 − q)
1

(1 − qx)2
+ 2q(1 − qx)

1
(1 − qx)2

=
2q2(1 − x)
(1 − qx)2

and it is non-negative for all x < 1. In point x = 1, the LHS of (5)
reaches the value 1. So, if the inequality holds for some x, then it is
true for x < y < 1.

We get that 1-SLA rule is optimal. Because it is the threshold
rule, we get that the threshold is a value

x0 =
x⋆p − 1
p − 1

, (6)

where x⋆ is a solution of the equation

x2e
2
x = e3, x > 1.

Numerically, x⋆
≈ 3.3145. Note that if p ≥

1
x⋆ := p⋆

≈ 0.3017046
the threshold is equal to 0. Therefore, 1-SLA calls for a stop on a
very first observation. It is easy to see that p⋆ is a solution of the
equation

p2e−2p
= e−3

for p between 0 and 1.

2.2. The second proof of the 1-SLA optimality

Another possibility to prove the 1-SLA optimality is by using the
Bellman optimality equation. Let ck(x) denote the payoff earned
by continuing observations in an optimal manner. Then, vk(x) =

max{wk(x), ck(x)} is the optimal payoff provided that we start from
state (k, x). It leads to the recursive equation:

ck(x) =
πk+1

πk

(
xck+1(x) +

∫ 1

x
vk+1(y)

)
. (7)

Since w does not depend on k also c and v do not depend on k.
Therefore, Eq. (7) leads to

c(x) = q
(
xc(x) +

∫ 1

x
v(y)dy

)
(8)

and v(x) = max{w(x), c(x)}. We get

c(x) =
q

1 − qx

∫ 1

x
v(y)dy

and the optimal payoff v(x) =
q

1−qx {2 −
1−q
1−qx ,

∫ 1
x v(y)dy}. For big

values of x, let us say x > x0; we have v(x) = w(x), where x0
satisfies an equation

2 −
1 − q
1 − qx

=

∫ 1

x
v(y)dy.

It means that the stopping region contains {(n, x) : x ≥ x0}. For
x ≤ x0, we have

(1 − qx)v(x) = q
(∫ x0

x
v(y)dy +

∫ 1

x0

w(y)dy
)

(9)
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