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a b s t r a c t

Least squares Monte Carlo (LSM) is commonly used to manage and value early or multiple exercise finan-
cial or real options. Recent research in this area has started applying approximate linear programming
(ALP) and its relaxations, which aim at addressing a possible ALP drawback. We show that regress-later
LSM is itself an ALP relaxation that potentially corrects this ALP shortcoming. Our analysis consolidates
two streams of research and supports using this LSM version rather than ALP on the considered models.

© 2017 Elsevier B.V. All rights reserved.

1. Introduction

The optimal exercise and valuation of options play an impor-
tant role in financial engineering and real option applications.
Examples include American/Bermudan options [23], [30, chapter
8], swing options [6,16,35,40,44], [49, chapter 20], [53, chapter 7],
switching options [18,26,56], and energy storage assets modeled
as real options [5,10,13,32,37,43,44,51,57]. The valuation of these
types of options typically gives rise to intractable Markov decision
processes (MDPs).

The extant literature commonly approaches the solution of
these MDPs using the least squares Monte Carlo (LSM) approach
[5,9–11,13,15,18,21,26,27,29,30], [31, chapter 8], [34, chapter 7],
[38,44,45,52,55,61]. LSM computes a value/continuation function
approximation, which can then be used to obtain a feasible op-
tion exercise policy and estimate a lower bound. LSM has two
basic variants: (i) the standard regress-now version (LSMN) that
approximates the MDP continuation function [14], [30, chapter 8],
[38,61], and (ii) the regress-later version (LSML) that approximates
the MDP value function [9,11,31,44]. Whereas LSMN is commonly
used, Beutner et al. [9] andNadarajah et al. [44] provide theoretical
and numerical support for using LSML instead.

✩ The previous version of this paper was titled ‘‘Regress-later Least Squares
Monte Carlo: Duality Perspective and Energy Real Option Application’’.
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Recently, Christensen [17] and Nadarajah et al. [43] have ap-
plied the approximate linear programming (ALP) approach [50]
to American option and commodity storage valuation problems,
respectively. ALP is an approximate dynamic programming (ADP)
approachmainly used in economics and operations research appli-
cations (see, e.g., [1–4,19,22,24,25,33,36,41,42,58–60,62,63]). De-
spite these successful applications of ALP and its analogous use
by Christensen [17], Nadarajah et al. [43] finds that it can per-
form poorly for a particular class of value function approximations
(VFAs). Moreover, they establish that formulating and solving ALP
relaxations yields near optimal policies. These authors attribute
the dismal observed ALP performance to a possible distortion
between optimal ALP dual solutions and stage-state-action visit
frequencies of optimal MDP deterministic policies. Petrik and Zil-
berstein [46] and Desai et al. [22] identify similar issues with ALP
and propose alternative ALP relaxations to overcome them.

In this paper we show that LSML is itself an ALP relaxation.
This result consolidates two separate streams of research. It is
based on a novel application of the ALP relaxation framework
proposed in [43]. This scheme relies on adding constraints to the
ALP dual and taking the dual of this restricted model to obtain
an ALP relaxation. The ALP dual restricting constraints that we
use and the resulting ALP relaxation differ from the ones available
in the existing literature [22,43,46]. Our analysis suggests that
these constraints might alleviate the stated potential ALP draw-
back. LSML is both simpler (easier to code) and more practical
(faster to execute) than ALP. Our finding adds potentially improved
accuracy to these advantages of using LSML rather than ALP to

http://dx.doi.org/10.1016/j.orl.2017.05.010
0167-6377/© 2017 Elsevier B.V. All rights reserved.

http://dx.doi.org/10.1016/j.orl.2017.05.010
http://www.elsevier.com/locate/orl
http://www.elsevier.com/locate/orl
http://crossmark.crossref.org/dialog/?doi=10.1016/j.orl.2017.05.010&domain=pdf
mailto:selvan@uic.edu
mailto:ns7@andrew.cmu.edu
http://dx.doi.org/10.1016/j.orl.2017.05.010


410 S. Nadarajah, N. Secomandi / Operations Research Letters 45 (2017) 409–414

approximately solve intractable MDPs that arise in financial en-
gineering and real option applications. We apply LSML and ALP
to a set of natural gas storage instances on which LSML is known
to lead to near optimal operating policies and almost tight (dual)
upper bounds on the value of an optimal policy [44]. We observe
that LSML yields substantially better storage policies than ALP,
in addition to exhibiting considerably shorter run times. These
results complement the numerical comparison of LSMN and ALP
performed in [43] in the same context. Moreover, although our
primary focus is on LSML, we establish that LSMN is a relaxation
of a linear program related to the ALP model, which we formulate.

In Section 2 we formulate an MDP for the management and
valuation of options with early and multiple exercise. We present
LSML in Section 3. We apply ALP to our MDP in Section 4. In
Section 5 we establish that LSML is an ALP relaxation. We briefly
summarize our numerical findings in Section 6. We conclude in
Section 7. An online supplement includes proofs, the details of our
numerical study, and the LSMN analysis.

2. MDP

In this section we formulate a finite horizon MDP for the valua-
tion and management of options that feature early and multiple
exercise opportunities. There are I stages that belong to the set
I := {0, . . . , I−1} and are indexed by i. Each stage i corresponds to
an option exercise date Ti. The status of the option is denoted by the
scalar xi and belongs to the discrete set Xi. The initial option status
is x0, that is, X0 := {x0}. The information state is the vector wi ∈

Wi ⊆ RI−i. It represents, for example, the option underlying asset
term structure (wi,i, wi,i+1, . . . , wi,I−1), wherewi,j is the element of
the term structure corresponding to date Tj at time Ti. For instance,
wi,i might be the spot price of an asset and wi,j might be the
date Ti price of a futures contract for this asset with delivery at
time Tj. We assume that each set Wi is discrete. Our assumption
simply avoids technical complications in our theoretical analysis
performed in Section 5. We deviate from this assumption in our
numerical investigation summarized in Section 6. The stage i state
space is Xi × Wi. We let XI be the terminal option status set. We
define WI as the singleton {0}.

The option exercise action ai at stage i and state (xi, wi) belongs
to the discrete set Ai(xi). Performing this action results in an
immediate reward given by the function ri(xi, wi, ai). The transition
function fi(xi, ai) specifies the corresponding stage i + 1 option
status. The information state evolves from wi to wi+1 according to
a known stochastic process independent of xi and ai. We discount
cash flows using the per-stage risk-free discount factor δ ∈ (0, 1].
There is no reward associated with any terminal option status.

LetΠ define the set of all feasible policies. We denote by Aπ
i the

stage i decision rule of feasible policy π applied to state (xi, wi). An
optimal policy solves

max
π∈Π

∑
i∈I

δiE[ri(xπ
i , wi, Aπ

i (x
π
i , wi))|x0, w0],

where E denotes expectation under a risk neutral measure [54]
for the stochastic process that describes the evolution of the infor-
mation state, and xπ

i is the random option status at stage i under
policy π .

In theory, an optimal set of actions for each stage and state can
be obtained by solving the following stochastic dynamic program
(SDP) with boundary conditions VI (xI , wI ) := 0 for each (xI , wI ) ∈

XI × WI :

Vi(xi, wi) = max
ai∈Ai(xi)

{ri(xi, wi, ai) + δE[Vi+1(fi(xi, ai), wi+1)|wi]}, (1)

for each (i, xi, wi) ∈ I×Xi×Wi, where Vi(xi, wi) denotes the stage i
value function at state (xi, wi). Nadarajah et al. [44] illustrates how
amodel that closely resembles SDP (1) canbe specified to represent

swing and storage options, which generalize simpler options of the
Bermudan type (see, e.g., [23] and [30, chapter 8]).

To ease the exposition, for themost part in the rest of this paper
wewrite (i, xi, wi, ai) instead of (i, xi, wi, ai) ∈ I×Xi ×Wi ×Ai(xi),
and use (·)−(i) to indicate that i is excluded from I in the tuple
ground set.

3. LSML

In this section we present the LSML method for our MDP. This
material is based on [44, §3.2]. LSML approximates the value func-
tion of SDP (1). Specifically, it expresses the stage i VFA as a linear
combination of a given set of basis functions, which is a common
approach in ADP (see, e.g., [7, chapter 6.1.1], [28], [30, p. 430],
and [47, p. 326]). The bth basis function at stage i is φi,b. The
weight associated with this basis function when the option status
is xi is βi,xi,b. We define the set of these basis functions and the
vector of their associated weights by φi := {φi,b, b ∈ Bi} and
βi,xi := (βi,xi,b, b ∈ Bi), respectively, where Bi := {1, 2, . . . , Bi}

and Bi is a positive integer. The stage i VFA at state (xi, wi) is∑
b∈Bi

φi,b(wi)βi,xi,b. In each stage, our VFA relies on basis functions
that depend only on the information state, whereas the option
status is an index of the weights. This modeling approach is com-
mon in the LSM literature (see, e.g., [10,18,26,38,44]). However,
the methods and analysis discussed in this paper can be extended
to the case when the option status is an argument of the basis
functions rather than an index of their weights.

Algorithm 1: LSML

1. Generate the set {w
p
i , (i, p) ∈ I × P} of sample paths of the

information state and define WP
i := {w

p
i , p ∈ P} for each

stage i ∈ I.

2. Set βLSM
I,xI

to 0 for each xI ∈ XI .

3. For each i = I − 1 to 0 do:

For each xi ∈ Xi do:

(i) For each p ∈ P do: compute the value function
estimate

vi(xi, w
p
i ) := max

ai∈Ai(xi)

⎧⎨⎩ri(xi, w
p
i , ai)

+ δ
∑

b∈Bi+1

E[φi+1,b(wi+1)|w
p
i ]β

LSM
i+1,fi(xi,ai),b

⎫⎬⎭ . (2)

(ii) βLSM
i,xi

:= minβi,xi∈R
Bi ∥

∑
b∈Bi

φi,b(·)βi,xi,b − vi(xi, ·)∥2,
where ∥ · ∥2 denotes two-norm.

4. Return βLSM
i,xi

for each (i, xi) ∈ I × Xi.

Algorithm1 summarizes the LSML steps. LSML generates the set
of P information state Monte Carlo sample paths {w

p
i , (i, p) ∈ I ×

P}, with P := {1, 2, . . . , P}, starting from the known information
statew0 in stage 0, and uses it to define the setWP

i := {w
p
i , p ∈ P}

of sampled information states for each stage i ∈ I. The LSML
terminal condition is to set to zero the vector βLSM

I,xI
for each option

status xI (where the superscript LSM abbreviates least squares
Monte Carlo). Beginning from stage I − 1 and moving backward to
stage zero, for each option status xi LSML executes steps (i) and (ii).
In step (i) for each index p ∈ P it computes the estimate vi(xi, w

p
i )

of the stage i value function at option status xi and information
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