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a b s t r a c t

We discuss two approaches to approximate the convex and concave envelopes of bilinear functions over
hypercubes. The first approach is based on a semidefinite program. The second approach considers some
predefined cover sets of a hypercube and leads to a linear program. Then we establish a connection
between the convex envelope of a bilinear function and the concave envelope of a piecewise linear
function. Numerical experiments are conducted to compare the two approaches. As an extension, a novel
approach is discussed.

© 2017 Elsevier B.V. All rights reserved.

1. Introduction

There has been a great amount of studies devoted to developing
convex underestimators and concave overestimators of nonlinear
functions f (x) over various polyhedral sets. One of important mo-
tivations in optimization community is that, one can reformulate
a complicated usually non-convex problem as an easier problem
with convex representations of the objective function and con-
straints. Such convex relaxations can then be solved repeatedly in
branch-and-bound algorithms, where searching spaces are refined
in a convergent way. In general, the computational efficiency of
branch-and-bound is greatly influenced by the strength of convex
relaxations.

Among such investigations, the construction and approxima-
tion of convex and concave envelopes of bilinear functions over
boxes draw much attention. This is mainly due to the following
reasons. First, many important problems involve bilinear terms.
Second, boxes are naturally outer approximations of polytopes.
Therefore the estimators of convex and concave envelopes of f over
a box are also valid estimators for f over polytopes contained in
the box. In addition, most branch-and-bound algorithms partition
the searching space by divisions of the feasible region into boxes.
This also motivates investigations in deriving strong envelope es-
timators over boxes. It is well known that an n-dimensional box
is a linear transformation of a hypercube. Thus we consider in this
paper the convex (resp. concave) envelope of a bilinear function (1)
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over a hypercube Hn = [0, 1]n:

f (x) =
1
2
xTQx =

∑
i<j

Qijxixj (1)

where Qij ∈ R (1 ≤ i < j ≤ n),Qii = 0 (i = 1, . . . , n).
There are two main research directions on convex and concave

envelopes of f over Hn. The first direction is motivated by the
definition that the convex envelope of any bounded f over anynon-
empty compact set P is a function f̌ : P ∋ x ↦→ f̌ (x) = inf{u :

(x, u) ∈ conv epi f }, where epi f = {(x, u) : f (x) ≤ u} and conv epi f
represents its convex hull. Geometrically, one can interpret f̌ as the
bottom of the convex hull of the epigraph of f over P . Since P is
compact and f is continuous, this definition is equivalent to

min
λi

⎧⎨⎩∑
vi∈P

λif (vi) : λivi = x,
∑
vi∈P

λi = 1, λi ≥ 0

⎫⎬⎭ . (2)

The concave envelope f̂ (x) of f over P is defined symmetrically by
replacing minimization to maximization. When P = Hn, a nice
property of bilinear function f due to Sherali [20] and Rikun [19]
is that its convex and concave envelopes over a hypercube Hn are
vertex polyhedral, i.e., the envelopes of f on Hn coincide with the
envelopes of its restriction to the vertices of Hn. This property
allows us to simplify definition (2) to

min
λi

{
2n∑
i=1

λif (vi) :

2n∑
i=1

λivi = x,
2n∑
i=1

λi = 1, λi ≥ 0, ∀i

}
, (3)

where vi, i ∈ {1, . . . , 2n
} are vertices of Hn. Owning to the expo-

nential number of vertices, formula (3) is rarely exploited.
The second research line can be treated as the dual of the first

since a convex (resp. concave) envelope can be interpreted as the
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pointwise supremum (resp. infimum) of an affine under-(resp.
over-) estimator of f over P . Hence, we have

f̌ (x) = max
α,γ

{
γ : αT (x − v) + γ ≤ f (v), ∀ v ∈ P

}
, (4)

where (α, γ ) ∈ Rn+1 defines the supporting hyperplane of f̌ at
point x.When P = Hn, one can replace set P with its extremepoints
due to the vertex polyhedral property of f̌ . However, the number
of extreme points is exponential. A cutting-plane algorithm is used
in [5] to find a facet of the convex envelope by separating the
supporting function (α, γ ) ∈ Rn+1 at a point. Perhaps, the most
known convex and concave envelopes approximation of f over a
hypercube is McCormick inequalities [16]:

max{xi + xj − 1, 0} ≤ xixj ≤ min{xi, xj}, i < j. (5)

It is known that term-wiseMcCormick relaxation characterizes the
convex and concave envelope over rectangles [3]. In general, this is
not true for higher dimensional cases. The triangle inequalities [18]
in concert with McCormick inequalities characterize the convex
hull of f (x) over a cube (n = 3). As noticed in [17], the number
of facets defining the convex and concave envelopes is indicated
by the number of simplices induced by the triangulations of a
hypercube. But it grows super-exponentially in the number of
dimension.

A number of papers are also dedicated to giving explicit char-
acterizations of convex and concave envelopes over special poly-
topes. Locatelli and Schoen [13] characterize convex envelopes
for some general bivariate functions over various polytopes in
R2. Linderoth [12] presents analytical formulas for f over disjoint
triangular regions. Tawarmalani et al. [22] derive envelopes for
several nonlinear functions via polyhedral divisions of a hyper-
rectangle. Recently, Hijazi [10] characterized the convex hull of a
bilinear term xy over the intersection between a rectangle and a
dominance constraint x ≤ y.

To deal with difficulties in (3) and (4), one may consider ex-
tended formulations with moderate sizes. However, as observed
in [15], extended formulations do not always bring improvements
comparedwithMcCormick relaxation (5). In particular, the authors
show that if the coefficients of a bilinear function as (1) are nonneg-
ative, the ratio of the gap between McCormick’s over and under
estimators over the gap of the convex and concave envelopes is
always less than 2. Lasserre and Thanh [11] construct a convex
polynomial pd ∈ R[x] (degree ≤ d) underestimating f , which can
be approximated by solving a hierarchy of semidefinite programs
(SDP).

We investigate in this paper the strength of different ap-
proaches on approximating the convex and concave envelopes
of the bilinear f over Hn. In Section 2, we review an SDP based
estimator. Then we propose a novel approximation method using
linear programs (LP). In addition, we show that the convex (resp.
concave) envelope of a bilinear function f is affinely equivalent to
the concave (resp. convex) envelope of a piecewise linear function.
In Section 3, we report a set of numerical results to compare
these two approaches. Finally, we propose an interesting research
direction.

Notation. For a matrix C , CT denotes its transpose and Cij repre-
sents its ith row jth column component. CI,J represents the sub-
matrix composed by set I of columns and set J of rows of C . When
I = J , CI stands for CI,I . For a set S, conv S denotes its convex hull
and |S| represents its cardinality. Hn stands for an n-dimensional
hypercube. For a general function f : Hn ↦→ R, f̌ (resp.̂f ) denotes
the convex (resp. concave) envelope of f overHn. The inner product
between two matrices A, B ∈ Rm×n is denoted by ⟨A, B⟩. For a
square matrix A ∈ Rn×n, diag(A) ∈ Rn represents the vector of

diagonal elements. For a vector a ∈ Rn, Diag(a) ∈ Sn stands for the
n × n diagonal matrix filled by vector a. For a symmetric matrix
X ∈ Sn and vector x ∈ Rn, S(x, X) refers to the matrix

(
1 xT

x X

)
in

Sn+1. τ (X) = (Xij)1≤i≤j≤n is the vectorization of the upper triangular
part of the matrix X and τ+(X) = (Xij)1≤i<j≤n denotes the strictly
upper triangular part.

2. Main results

In this section, we review an SDP based convex (resp. concave)
underestimator (resp. overestimator) and propose a novel way to
construct estimators based on LPs. Several theoretical results are
established.

2.1. SDP based estimators

Given a general bilinear function f , we are interested in con-
structing convex and concave estimators that are valid over a
hypercube. To this end, we consider the following assumption.

Assumption1. A set of valid inequalities involving quadratic terms
is available,

xTAkx + bTk x + dk ≤ 0, ∀x ∈ Hn, ∀k ∈ K, (6)

where K is an index set.

Note that Assumption 1 in general holds for bilinear optimiza-
tion problems over any compact set. For instance, such valid in-
equalities can be McCormick’s inequalities (5), Padberg’s triangle
inequalities [18], RLT based inequalities [1]. The idea is to use
these valid inequalities to construct strong estimators. We start by
constructing a convex underestimator. We associate nonnegative
multipliers α ∈ R|K|

+ with the set of inequalities. Then we add
the negative terms

∑
k∈Kαk(xTAkx + bTk x + dk) to f (x). For ease

of presentation, we define fα(x) = xTQ (α)x + c(α)T x + p(α),
where Q (α) =

1
2Q +

∑
k∈KαkAk, c(α) =

∑
k∈Kαkbk and p(α) =∑

k∈Kαkdk.
Recall that fα is a convex underestimator of f overHn if and only

if fα ≤ f and fα is convex over the hypercubeHn. Obviously, it holds
that fα(x) ≤ f (x), ∀x ∈ Hn. The convexity of fα can be ensured by
restricting Q (α) to be positive semidefinite. Let us denote byA the
set of feasible choices of α with A :=

{
α ∈ Rn

+
: Q (α) ∈ Sn

+

}
.

Weensure the non-emptiness of setA by explicitly adding valid
inequalities x2i ≤ xi (i = 1, . . . , n) to inequality system (6). As a
consequence, it also follows that A has a nonempty interior. The
strongest convex underestimator of the form fa can be obtained by
solving the following problem

sup
α∈A

fα(x). (7)

Problem (7) is then strictly feasible. The dual of (7) reads

inf
X

1
2
⟨Q , X + xxT ⟩

s.t. ⟨Ak, X + xxT ⟩ + bTk x + dk ≤ 0, ∀k ∈ K,

X ∈ Sn
+
.

(8)

The feasible region of (8) is nonempty (e.g., takeX as the nullmatrix
of size n). In addition, as (7) is strictly feasible, the dual optimum
is attained and is equal to the primal optimum of (7). By change of
variables X ′

= X + xxT , one can rewrite (8) as

min
X ′

{
1
2
⟨Q , X ′

⟩ : (x, X ′) ∈ K
}

, (9)

where K := {(x, X ′) ∈ Hn × Sn
: ⟨Ak, X ′

⟩ + bTk x + dk ≤ 0, ∀k ∈

K, S(x, X ′) ⪰ 0}. Notice that when x is not fixed, problem (9) is
exactly the Shor’s relaxation in conjunctionwith valid inequalities.
Formally, we summarize the foregoing as follows.
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