

Contents lists available at [ScienceDirect](http://www.elsevier.com/locate/orl)

Operations Research Letters

journal homepage: www.elsevier.com/locate/orl

Strategic behavior in the partially observable Markovian queues with partial breakdowns

Senlin Yu [*](#page-0-0), Zaiming Liu, Jinbiao Wu

School of Mathematics and Statistics, Central South University, Changsha 410083, Hunan, PR China

ARTICLE INFO

a b s t r a c t

Article history: Received 5 December 2016 Received in revised form 6 July 2017 Accepted 21 July 2017 Available online 29 July 2017

Keywords: Equilibrium strategies Partial breakdowns Random environment

1. Introduction

Recently, there is an emerging tendency to study queueing systems from an economic viewpoint, see Burnetas and Economou [\[2\]](#page--1-0), Guo and Hassin [\[3\]](#page--1-1) and Yu et al. [\[6\]](#page--1-2). The analysis of queueing systems with breakdowns has received considerable attention in the literature. Our contribution is motivated by the paper Li et al. [\[4\]](#page--1-3), the server's state is modulated by an external environment. Yang et al. [\[5\]](#page--1-4) studied the *MAP*/*PH*/*N* retrial queue in a random environment. We provide supplement to Li et al. [\[4\]](#page--1-3) by studying the corresponding partially observable cases.

2. Model description

Consider the single-server queue subject to a Poisson arrival process with rate λ. The server alternates between two states that are exponentially distributed at rates ζ and θ respectively. During the normal working state, service times are exponentially distributed with rate μ . In the partial breakdowns state, the service rate is μ_0 and $\mu_0 < \mu$. Let $L(t)$ and $I(t)$ denote the queue length and the server's state (1: normal working state, 0: partial breakdowns state) respectively. The non-zero transition rates of the process $\{(L(t), I(t)) : t \geq 0\}$ are

 $q_{(n,i)(n+1,i)} = \lambda, n = 0, 1, 2, \ldots, i = 0, 1;$

 $q_{(n,1)(n-1,1)} = \mu, n = 1, 2, 3, \ldots;$

This paper studies the equilibrium strategies in the almost observable and almost unobservable *M*/*M*/1 queues with partial breakdowns. This work compensates the game theoretic analysis in Li et al. (2013) by studying the corresponding partially observable cases.

© 2017 Elsevier B.V. All rights reserved.

$$
q_{(n,0)(n-1,0)} = \mu_0, \; n = 1,2,3,\ldots;
$$

 $q_{(n,0)(n,1)} = \theta$, $n = 0, 1, 2, \ldots;$

 $q_{(n,1)(n,0)} = \zeta$, $n = 0, 1, 2, \ldots$

Every customer receives a reward of *R* units after service. Besides, there exists a waiting cost of *C* units per time unit that he remains in the system. The server's state is modulated by a random environment *I*(*t*), which is a continuous-time Markov chain with state space $\{1, 0\}$. When $I(t) = i$, the system behaves as an $M(\lambda)/M(\mu_i)/1$ queue and $\mu_1 = \mu$. The *q*-matrix and stationary distribution of *I*(*t*) are

$$
Q = \begin{pmatrix} -\zeta & \zeta \\ \theta & -\theta \end{pmatrix}, \ \pi_1 = \frac{\theta}{\zeta + \theta}, \ \pi_0 = \frac{\zeta}{\zeta + \theta}.
$$
 (1)

3. The almost unobservable case

In this case, customers observe *I*(*t*), but not *L*(*t*). A mixed strategy is specified by the joining probabilities (q_0, q_1) . If all customers use the strategy (q_0, q_1) , the system is similar to the original queue except that the arrival rate equals λq_i for state *i*. Let P_{ni} be the stationary distribution of the corresponding system.

Lemma 3.1. *If* $\mu > \lambda q_1$ *and* $\mu_0 > \lambda q_0$ *, the system is stable.*

Proof. We have the following equations:

$$
(\lambda q_0 + \theta)P_{00} = \zeta P_{01} + \mu_0 P_{10}, \ (\lambda q_1 + \zeta)P_{01} = \theta P_{00} + \mu P_{11}, \tag{2}
$$

^{*} Corresponding author.

E-mail addresses: [yusenlin@csu.edu.cn,](mailto:yusenlin@csu.edu.cn) yusenlinmc@163.com (S. Yu), math_1zm@csu.edu.cn (Z. Liu), wujinbiao@csu.edu.cn (J. Wu).

$$
(\lambda q_0 + \theta + \mu_0)P_{n0} = \lambda q_0 P_{n-1,0} + \zeta P_{n1} + \mu_0 P_{n+1,0}, \ n \ge 1,
$$
 (3)

$$
(\lambda q_1 + \zeta + \mu)P_{n1} = \lambda q_1 P_{n-1,1} + \theta P_{n0} + \mu P_{n+1,1}, \ n \ge 1. \tag{4}
$$

Starting with $n = 0$ and summing these equations, then

$$
\mu P_{n+1,1} + \mu_0 P_{n+1,0} = \lambda q_1 P_{n1} + \lambda q_0 P_{n0}, \ \ n \ge 0. \tag{5}
$$

Note that $\sum_{n=0}^{\infty} P_{ni} = \pi_i$, the quantity π_i is the marginal probability of the external environment *I*(*t*) being at state *i*. π_0 and π_1 are independent of the arrival and service rates. By summing [\(5\)](#page-1-0) over all *n*,

$$
\mu P_{01} + \mu_0 P_{00} = (\mu - \lambda q_1)\pi_1 + (\mu_0 - \lambda q_0)\pi_0.
$$
 (6)

From Theorem 1.6 in p. 160 of Anderson [\[1\]](#page--1-5), since all states are communicating, from the theory of recurrent events, all the probabilities P_{ni} ($n = 0, 1, 2, \ldots, i = 0, 1$) are either all positive (and sum to one) or, alternatively, all equal to zero. From (6) , if $\mu > \lambda q_1$ and $\mu_0 > \lambda q_0$, all the probabilities P_{ni} are positive (and sum to one) from the ergodicity theory. The system is stable. \square

Let
$$
G_i(z) = \sum_{n=0}^{\infty} P_{ni} z^n
$$
, $i = 0, 1$. From (2)–(4),

$$
[(\lambda q_1 z - \mu)(1 - z) + \zeta z]G_1(z) - \theta zG_0(z) = (z - 1)\mu P_{01},
$$
 (7)

$$
[(\lambda q_0 z - \mu_0)(1 - z) + \theta z]G_0(z) - \zeta zG_1(z) = (z - 1)\mu_0 P_{00},
$$

$$
G_1(z) = \frac{[(\lambda q_0 z - \mu_0)(1 - z) + \theta z]\mu P_{01} + \mu_0 \theta z P_{00}}{Q(z)},
$$
\n(8)

 α where $Q(z) = \lambda^2 q_0 q_1 z^3 - (\lambda q_0 q_1 + q_0 \zeta + q_1 \theta + q_1 \mu_0 + q_0 \mu) \lambda z^2 +$ $(\zeta \mu_0 + \theta \mu + \mu \mu_0 + \lambda q_1 \mu_0 + \lambda q_0 \mu)z - \mu \mu_0$. From [\(5\),](#page-1-0) we get

$$
(\mu - \lambda q_1 z)G_1(z) + (\mu_0 - \lambda q_0 z)G_0(z) = \mu P_{01} + \mu_0 P_{00}.
$$
 (9)

Lemma 3.2. *The function* $Q(z)$ *has a unique root* g *in* $(0, 1)$ *.*

Proof. If $0 < q_i \le 1$, $Q(0) < 0$ and $Q(1) > 0$. Clearly, $\mu\theta + \mu_0\zeta > 0$ $λq_1θ + λq_0ζ$, if $\frac{\overline{\mu}}{\lambda q_1} \ge \frac{\mu_0}{\lambda q_0}$, $\frac{\mu}{\lambda q_1} > 1$ and $Q(\frac{\mu}{\lambda q_1}) = \frac{\mu\xi}{\lambda q_1}(\mu_0 - \frac{\mu\overline{q_0}}{q_1}) \le \frac{\mu}{\lambda q_1}$ 0. The three roots lie in (0, 1), (1, $\frac{\mu}{\lambda q_1}$) and $\left(\frac{\mu}{\lambda q_1}, \frac{\infty}{\infty}\right)$. Similarly, if $\frac{\mu_0}{\lambda q_0} > \frac{\mu}{\lambda q_1}, \frac{\mu_0}{\lambda q_0} > 1$ and $Q(\frac{\mu_0}{\lambda q_0}) < 0$. When $q_0 = q_1 = 0$, $g = \frac{\mu \mu_0}{\zeta \mu_0 + \theta \mu + \mu \mu_0}$.

The numerator of [\(8\)](#page-1-3) must equal zero when $z = g$. From [\(6\),](#page-1-1)

$$
P_{01} = \frac{\theta g(\mu \pi_1 + \mu_0 \pi_0 - \lambda q_1 \pi_1 - \lambda q_0 \pi_0)}{\mu \theta g - \mu \varphi(g)},
$$
\n(10)

where $\varphi(g) = (\lambda q_0 g - \mu_0)(1 - g) + \theta g$. Since $G_i(1) = \pi_i$, by differentiating (7) and (9) with respect to *z* and setting $z = 1$, then $G'_0(1)$

$$
= \frac{\lambda q_1 \pi_1 \zeta + \lambda q_0 \pi_0 \zeta + [\mu P_{01} + (\lambda q_1 - \mu) \pi_1](\lambda q_1 - \mu)}{\theta(\mu - \lambda q_1) + \zeta(\mu_0 - \lambda q_0)}, \quad (11)
$$

 $G_1'(1)$ $=\frac{\lambda q_1 \pi_1 \theta + \lambda q_0 \pi_0 \theta + [\mu P_{01} + (\lambda q_1 - \mu) \pi_1](\mu_0 - \lambda q_0)}{q_0 \pi_0 \theta + [\mu P_{01} + (\lambda q_1 - \mu) \pi_1](\mu_0 - \lambda q_0)}$ $\frac{\theta(\mu - \lambda q_1) + \zeta(\mu_0 - \lambda q_0)}{\theta(\mu - \lambda q_1) + \zeta(\mu_0 - \lambda q_0)}$. (12)

Due to PASTA property, the probability that there are *n* customers in the system given that the server is found at state *i* is

$$
p(n|i) = \frac{P_{ni}}{\sum_{k=0}^{\infty} P_{ki}} = \frac{P_{ni}}{\pi_i}, n = 0, 1, 2, \ldots, i = 0, 1.
$$

Let $L_i(q_0, q_1)$ be the conditional queue length in state *i*, then

$$
L_i(q_0, q_1) = \sum_{n=0}^{\infty} np(n|i) = \frac{G_i'(1)}{\pi_i}, i = 0, 1.
$$

From [\(1\),](#page-0-2) [\(10\),](#page-1-6) [\(11\)](#page-1-7) and [\(12\),](#page-1-8) we find

$$
L_0(q_0, q_1) = \frac{\lambda q_1 \theta \zeta + \lambda q_0 \zeta^2 + \theta (\lambda q_1 - \mu)^2}{\zeta [\theta(\mu - \lambda q_1) + \zeta (\mu_0 - \lambda q_0)]} + \frac{\theta g(\mu - \lambda q_1)(\lambda q_1 \theta + \lambda q_0 \zeta - \mu \theta - \mu_0 \zeta)}{\zeta (\theta g - \varphi(g)) [\theta(\mu - \lambda q_1) + \zeta (\mu_0 - \lambda q_0)]},
$$
(13)

$$
L_1(q_0, q_1) = \frac{\lambda q_1 \theta + \lambda q_0 \zeta + (\lambda q_1 - \mu)(\mu_0 - \lambda q_0)}{\theta(\mu - \lambda q_1) + \zeta(\mu_0 - \lambda q_0)} + \frac{g(\lambda q_0 - \mu_0)(\lambda q_1 \theta + \lambda q_0 \zeta - \mu \theta - \mu_0 \zeta)}{(\theta g - \varphi(g))[\theta(\mu - \lambda q_1) + \zeta(\mu_0 - \lambda q_0)]}.
$$
 (14)

In the fully observable case, see Li et al. [\[4\]](#page--1-3), a joining customer that finds the system at state (n, i) has mean sojourn time $T(n, i)$ and

$$
T(n, 0) - T(n, 1)
$$

= $\frac{\mu - \mu_0}{\mu_0 \zeta + \mu \theta} \left(1 - \left(\frac{\mu \mu_0}{\mu \mu_0 + \mu_0 \zeta + \mu \theta} \right)^{n+1} \right).$ (15)

If a joining customer finds the server at state *i*, his mean sojourn time is $T(L_i(q_0, q_1), i)$, $T(n, 0)$ and $T(n, 1)$ are given in Li et al. [\[4\]](#page--1-3), then

$$
T(L_0(q_0, q_1), 0)
$$

= $\frac{(\theta + \zeta)L_0(q_0, q_1)}{\mu_0 \zeta + \mu_0} + \frac{\mu - \mu_0}{\mu_0 + \mu_0 \zeta}$
+ $\frac{\mu_0(\mu_0 - \mu)}{(\mu_0 + \mu_0 \zeta)^2} \left(\frac{\mu_0}{\mu_0 + \mu_0 \zeta + \mu_0}\right)^{L_0(q_0, q_1) + 1} + \frac{1}{\mu_0 + \mu_0 \zeta + \mu_0} \left(\mu_0 + \zeta + \theta - \frac{\mu_0^2 \zeta(\mu - \mu_0)}{(\mu_0 + \mu_0 \zeta)^2}\right),$ (16)

$$
T(L_{1}(q_{0}, q_{1}), 1)
$$
\n
$$
= \frac{\mu_{0}\zeta(\mu - \mu_{0})}{(\mu_{0}\zeta + \mu\theta)^{2}} \left(\frac{\mu\mu_{0}}{\mu\mu_{0} + \mu_{0}\zeta + \mu\theta}\right)^{L_{1}(q_{0}, q_{1})+1} + \frac{1}{\mu\mu_{0} + \mu_{0}\zeta + \mu\theta} \left(\mu_{0} + \zeta + \theta - \frac{\mu\mu_{0}^{2}\zeta(\mu - \mu_{0})}{(\mu\theta + \mu_{0}\zeta)^{2}}\right) + \frac{(\theta + \zeta)L_{1}(q_{0}, q_{1})}{\mu_{0}\zeta + \mu\theta}.
$$
\n(17)

The expected net reward of such a customer is

 $S_i(q_0, q_1) = R - CT(L_i(q_0, q_1), i), i = 0, 1.$

Lemma 3.3. *If* q_1 *is fixed,* $S_0(q_0, q_1)$ *is strictly decreasing for* q_0 *. If* q_0 *is fixed,* $S_1(q_0, q_1)$ *is strictly decreasing for* q_1 *.*

Proof. From [\(13\),](#page-1-9) $\varphi(g)$ is increasing with respect to q_0 , the numerator is increasing for q_0 and the denominator is decreasing for q_0 . Hence, $L_0(q_0, q_1)$ is increasing for q_0 . $T(n, 0)$ is increasing with respect to *n* and thus $S_0(q_0, q_1)$ is decreasing for q_0 . Similarly, $S_1(q_0, q_1)$ is strictly decreasing for q_1 . □

Lemma 3.4. *If* $\mu > \lambda q_1$ *and* $\mu_0 > \lambda q_0$, $S_0(q_0, q_1) < S_1(q_0, q_1)$.

Proof. From [\(11\)](#page-1-7) and [\(12\),](#page-1-8) we get

$$
L_0(q_0, q_1) - L_1(q_0, q_1)
$$

=
$$
\frac{\theta(\mu - \lambda q_1)^2 + \zeta(\mu - \lambda q_1)(\mu_0 - \lambda q_0)}{\zeta \theta(\mu - \lambda q_1) + \zeta^2(\mu_0 - \lambda q_0)}
$$

+
$$
\frac{[\mu \zeta(\mu_0 - \lambda q_0) + \mu \theta(\mu - \lambda q_1)](\theta + \zeta)P_{01}}{\zeta \theta[\theta(\mu - \lambda q_1) + \zeta(\mu_0 - \lambda q_0)]}.
$$

Download English Version:

<https://daneshyari.com/en/article/5128379>

Download Persian Version:

<https://daneshyari.com/article/5128379>

[Daneshyari.com](https://daneshyari.com)