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a b s t r a c t

This paper studies the equilibrium strategies in the almost observable and almost unobservable M/M/1
queues with partial breakdowns. This work compensates the game theoretic analysis in Li et al. (2013) by
studying the corresponding partially observable cases.
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1. Introduction

Recently, there is an emerging tendency to study queueing sys-
tems froman economic viewpoint, see Burnetas and Economou [2],
Guo and Hassin [3] and Yu et al. [6]. The analysis of queueing sys-
tems with breakdowns has received considerable attention in the
literature. Our contribution is motivated by the paper Li et al. [4],
the server’s state is modulated by an external environment. Yang
et al. [5] studied the MAP/PH/N retrial queue in a random envi-
ronment. We provide supplement to Li et al. [4] by studying the
corresponding partially observable cases.

2. Model description

Consider the single-server queue subject to a Poisson arrival
process with rate λ. The server alternates between two states
that are exponentially distributed at rates ζ and θ respectively.
During the normal working state, service times are exponentially
distributedwith rateµ. In the partial breakdowns state, the service
rate isµ0 andµ0 < µ. Let L(t) and I(t) denote the queue length and
the server’s state (1: normal working state, 0: partial breakdowns
state) respectively. The non-zero transition rates of the process
{(L(t), I(t)) : t ≥ 0} are

q(n,i)(n+1,i) = λ, n = 0, 1, 2, . . . , i = 0, 1;

q(n,1)(n−1,1) = µ, n = 1, 2, 3, . . . ;
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q(n,0)(n−1,0) = µ0, n = 1, 2, 3, . . . ;

q(n,0)(n,1) = θ, n = 0, 1, 2, . . . ;

q(n,1)(n,0) = ζ , n = 0, 1, 2, . . . .

Every customer receives a reward of R units after service. Be-
sides, there exists a waiting cost of C units per time unit that he
remains in the system. The server’s state ismodulated by a random
environment I(t), which is a continuous-time Markov chain with
state space {1, 0}. When I(t) = i, the system behaves as an
M(λ)/M(µi)/1 queue and µ1 = µ. The q-matrix and stationary
distribution of I(t) are

Q =

(
−ζ ζ

θ −θ

)
, π1 =

θ

ζ + θ
, π0 =

ζ

ζ + θ
. (1)

3. The almost unobservable case

In this case, customers observe I(t), but not L(t). A mixed strat-
egy is specified by the joining probabilities (q0, q1). If all customers
use the strategy (q0, q1), the system is similar to the original queue
except that the arrival rate equals λqi for state i. Let Pni be the
stationary distribution of the corresponding system.

Lemma 3.1. If µ > λq1 and µ0 > λq0, the system is stable.

Proof. We have the following equations:

(λq0 + θ )P00 = ζP01 + µ0P10, (λq1 + ζ )P01 = θP00 + µP11, (2)
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(λq0 + θ + µ0)Pn0 = λq0Pn−1,0 + ζPn1 + µ0Pn+1,0, n ≥ 1, (3)

(λq1 + ζ + µ)Pn1 = λq1Pn−1,1 + θPn0 + µPn+1,1, n ≥ 1. (4)

Starting with n = 0 and summing these equations, then

µPn+1,1 + µ0Pn+1,0 = λq1Pn1 + λq0Pn0, n ≥ 0. (5)

Note that
∑

∞

n=0Pni = πi, the quantity πi is themarginal probability
of the external environment I(t) being at state i. π0 and π1 are
independent of the arrival and service rates. By summing (5) over
all n,

µP01 + µ0P00 = (µ − λq1)π1 + (µ0 − λq0)π0. (6)

From Theorem 1.6 in p. 160 of Anderson [1], since all states
are communicating, from the theory of recurrent events, all the
probabilities Pni (n = 0, 1, 2, . . . , i = 0, 1) are either all positive
(and sum to one) or, alternatively, all equal to zero. From (6), if
µ > λq1 and µ0 > λq0, all the probabilities Pni are positive (and
sum to one) from the ergodicity theory. The system is stable. □

Let Gi(z) =
∑

∞

n=0Pniz
n, i = 0, 1. From (2)–(4),

[(λq1z − µ)(1 − z) + ζ z]G1(z) − θzG0(z) = (z − 1)µP01, (7)

[(λq0z − µ0)(1 − z) + θz]G0(z) − ζ zG1(z) = (z − 1)µ0P00,

G1(z) =
[(λq0z − µ0)(1 − z) + θz]µP01 + µ0θzP00

Q (z)
, (8)

where Q (z) = λ2q0q1z3 − (λq0q1 + q0ζ + q1θ + q1µ0 + q0µ)λz2 +

(ζµ0 + θµ + µµ0 + λq1µ0 + λq0µ)z − µµ0. From (5), we get

(µ − λq1z)G1(z) + (µ0 − λq0z)G0(z) = µP01 + µ0P00. (9)

Lemma 3.2. The function Q (z) has a unique root g in (0, 1).

Proof. If 0 < qi ≤ 1, Q (0) < 0 and Q (1) > 0. Clearly, µθ + µ0ζ >
λq1θ + λq0ζ , if µ

λq1
≥

µ0
λq0

, µ

λq1
> 1 and Q ( µ

λq1
) =

µζ

λq1
(µ0 −

µq0
q1

) ≤

0. The three roots lie in (0, 1), (1, µ

λq1
) and ( µ

λq1
, ∞). Similarly, if

µ0
λq0

>
µ

λq1
, µ0

λq0
> 1 and Q ( µ0

λq0
) < 0. When q0 = q1 = 0,

g =
µµ0

ζµ0+θµ+µµ0
. □

The numerator of (8) must equal zero when z = g . From (6),

P01 =
θg(µπ1 + µ0π0 − λq1π1 − λq0π0)

µθg − µϕ(g)
, (10)

where ϕ(g) = (λq0g − µ0)(1 − g) + θg . Since Gi(1) = πi, by
differentiating (7) and (9) with respect to z and setting z = 1, then

G′

0(1)

=
λq1π1ζ + λq0π0ζ + [µP01 + (λq1 − µ)π1](λq1 − µ)

θ (µ − λq1) + ζ (µ0 − λq0)
, (11)

G′

1(1)

=
λq1π1θ + λq0π0θ + [µP01 + (λq1 − µ)π1](µ0 − λq0)

θ (µ − λq1) + ζ (µ0 − λq0)
. (12)

Due to PASTA property, the probability that there are n cus-
tomers in the system given that the server is found at state i is

p(n|i) =
Pni∑
∞

k=0 Pki
=

Pni
πi

, n = 0, 1, 2, . . . , i = 0, 1.

Let Li(q0, q1) be the conditional queue length in state i, then

Li(q0, q1) =

∞∑
n=0

np(n|i) =
G′

i(1)
πi

, i = 0, 1.

From (1), (10), (11) and (12), we find

L0(q0, q1) =
λq1θζ + λq0ζ 2

+ θ (λq1 − µ)2

ζ [θ (µ − λq1) + ζ (µ0 − λq0)]

+
θg(µ − λq1)(λq1θ + λq0ζ − µθ − µ0ζ )
ζ (θg − ϕ(g))[θ (µ − λq1) + ζ (µ0 − λq0)]

, (13)

L1(q0, q1) =
λq1θ + λq0ζ + (λq1 − µ)(µ0 − λq0)

θ (µ − λq1) + ζ (µ0 − λq0)

+
g(λq0 − µ0)(λq1θ + λq0ζ − µθ − µ0ζ )
(θg − ϕ(g))[θ (µ − λq1) + ζ (µ0 − λq0)]

. (14)

In the fully observable case, see Li et al. [4], a joining customer
that finds the system at state (n, i) has mean sojourn time T (n, i)
and

T (n, 0) − T (n, 1)

=
µ − µ0

µ0ζ + µθ

(
1 −

(
µµ0

µµ0 + µ0ζ + µθ

)n+1
)

. (15)

If a joining customer finds the server at state i, his mean sojourn
time is T (Li(q0, q1), i), T (n, 0) and T (n, 1) are given in Li et al. [4],
then

T (L0(q0, q1), 0)

=
(θ + ζ )L0(q0, q1)

µ0ζ + µθ
+

µ − µ0

µθ + µ0ζ

+
µθ (µ0 − µ)
(µθ + µ0ζ )2

(
µµ0

µµ0 + µ0ζ + µθ

)L0(q0,q1)+1

+
1

µµ0 + µ0ζ + µθ

(
µ0 + ζ + θ −

µµ2
0ζ (µ − µ0)

(µθ + µ0ζ )2

)
, (16)

T (L1(q0, q1), 1)

=
µ0ζ (µ − µ0)
(µ0ζ + µθ )2

(
µµ0

µµ0 + µ0ζ + µθ

)L1(q0,q1)+1

+
1

µµ0 + µ0ζ + µθ

(
µ0 + ζ + θ −

µµ2
0ζ (µ − µ0)

(µθ + µ0ζ )2

)
+

(θ + ζ )L1(q0, q1)
µ0ζ + µθ

. (17)

The expected net reward of such a customer is

Si(q0, q1) = R − CT (Li(q0, q1), i), i = 0, 1.

Lemma 3.3. If q1 is fixed, S0(q0, q1) is strictly decreasing for q0. If q0
is fixed, S1(q0, q1) is strictly decreasing for q1.

Proof. From (13), ϕ(g) is increasing with respect to q0, the nu-
merator is increasing for q0 and the denominator is decreasing
for q0. Hence, L0(q0, q1) is increasing for q0. T (n, 0) is increasing
with respect to n and thus S0(q0, q1) is decreasing for q0. Similarly,
S1(q0, q1) is strictly decreasing for q1. □

Lemma 3.4. If µ > λq1 and µ0 > λq0, S0(q0, q1) < S1(q0, q1).

Proof. From (11) and (12), we get

L0(q0, q1) − L1(q0, q1)

=
θ (µ − λq1)2 + ζ (µ − λq1)(µ0 − λq0)

ζθ (µ − λq1) + ζ 2(µ0 − λq0)

+
[µζ (µ0 − λq0) + µθ (µ − λq1)](θ + ζ )P01

ζθ [θ (µ − λq1) + ζ (µ0 − λq0)]
.
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