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a b s t r a c t

It is well-known that the classical economic lot-sizing problem with constant capacity and general
concave ordering/inventory cost functions can be solved inO(T 4) time (Florian and Klein, 1971).We show
that the problem can be solved in O(mT 3) time when the ordering cost functions are piecewise linear
concave and havem line segments with different slopes in a time period in average. Our algorithmmakes
use of the data structure of range minimum query (RMQ).

© 2017 Elsevier B.V. All rights reserved.

1. Introduction

The single-item economic lot-sizing model with constant ca-
pacity (ELS-CC) is a classical production planning model. The
general ELS-CC problem assumes constant capacity, unrestricted
backlogging and general concave ordering, inventory holding and
backlogging cost functions. In the literature of lot-sizing research,
Florian and Klein [3] have developed an O(T 4) optimal algorithm
for the general ELS-CC problem, where T is the number of time
periods in the planning horizon. It is still unknown whether the
O(T 4) running time complexity of solving the general ELS-CC prob-
lem could be reduced. But some direct special cases of ELS-CC
can be solved in lower running time complexity. An O(T 3) exact
algorithm is presented by van Hoesel and Wagelmans [6] for the
special case of ELS-CC when the ordering cost functions are fixed-
plus-linear (i.e., a fixed cost is incurred, irrespective of the order
size along with variable costs that are proportional with the order
size), inventory holding cost functions are linear (but backlogging
is not allowed in their model). Later, van Vyve [7] develops an
O(T 3) algorithm for the special case of ELS-CC with fixed-plus-
linear ordering cost functions and linear inventory holding and
backlogging cost functions (backlogging is allowed in his model).
Ou [4] presents an O(T 3) algorithm for the special case of ELS-CC
with fixed-plus-linear ordering cost functions and general concave
inventory holding and backlogging cost functions (backlogging
is allowed). In this paper we study the special case of ELS-CC
with piecewise linear concave ordering cost functions and general
concave inventory holding and backlogging cost functions, where
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backlogging is allowed. The problem we study is an extension of
the model of Ou [4] but still a special case of ELS-CC. We show that
the problem can be solved in O(mT 3) time, wherem is the average
number of line segments with different slopes of the ordering cost
function in a time period. Note that in themodel of [4], the ordering
cost function in each time period has exactly one line segment
with a specific slope. As such we generalize the O(T 3) algorithm by
Ou [4] which applies to a more restricted class, where the ordering
cost functions are fixed-plus-linear, as opposed to our piecewise
linear concave ordering cost functions.

In reality, most of the concave ordering cost functions are
piecewise linear concave. One of the traditional motivations of
piecewise linear concave ordering cost is that the production
planner faces multiple competing suppliers, where replenishment
from a supplier encounters either high fixed ordering cost but
low variable purchasing price, or low fixed ordering cost but high
variable purchasing price. The ordering cost function in eachperiod
turns out to be piecewise linear concave with m line segments
each of which has a different slope if there are m suppliers in the
period. Another traditional motivation of piecewise linear concave
ordering cost is that the production planner faces only one supplier
who provides incremental quantity discount.

Our algorithm is similar to the algorithm presented by Ou [4],
but we provide more optimal insights, and make use of range
minimum queries (RMQs) to return the minimum of some cost
quantities that are predetermined during our backward dynamic
programming algorithm, which is the key of achieving the O(mT 3)
running time complexity. Given a static array of n totally ordered
objects, the rangeminimumquery (RMQ) problem is to build a data
structure that allows us to answer efficiently subsequent on-line
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queries of the form ‘‘what is the position of a minimum element in
the subarray ranging from i to j ?’’ After anO(n)-time preprocessing
on the n objects, it only takes O(1) time to find out the minimum
element in the subarray ranging from i to j once the values of i and
j are provided. Furthermore, the space complexity of storing the n
objects to support O(1)-time RMQ is only O(n). A recent excellent
article on RMQ is referred to [2].

2. Model

The economic lot-sizing model we study can be described as
follows: There are T time periods in the planning horizon. In each
period i = 1, 2, . . . , T , there are a known demand di, a given
inventory cost function Hi and a given ordering cost function Pi.
Let Ii denote the inventory level at end of period i, and Xi the
replenishment quantity in period i. It is required that 0 ≤ Xi ≤ C
for i = 1, 2, . . . , T , where C is the given stationary production ca-
pacity. Backlogging is allowed. FunctionHi is assumed to be general
concave over intervals (−∞, 0] and [0, +∞), respectively, with
Hi(0) = 0. Function Pi is assumed to be piecewise linear concave
over interval (0, C] with mi given breakpoints Bi,1, Bi,2, . . . , Bi,mi ,
where 0 < Bi,1 < · · · < Bi,mi = C (for notational simplicity,
we define Bi,0 = 0). Specifically, each Pi is fixed-plus-linear over
interval (Bi,k−1, Bi,k] for any k = 1, 2, . . . ,mi, and we can express
function Pi as

Pi(Xi) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

0, if Xi = Bi,0;

si,1 + pi,1 · Xi, if Bi,0 < Xi ≤ Bi,1;

si,2 + pi,2 · Xi, if Bi,1 < Xi ≤ Bi,2;

...

si,mi + pi,mi · Xi, if Bi,mi−1 < Xi ≤ Bi,mi;

+∞, if Bi,mi < Xi,

where

0 ≤ si,1 < si,2 < · · · < si,mi ,

pi,1 > pi,2 > · · · > pi,mi ≥ 0,

and

Bi,k =
pi,k − pi,k+1

si,k+1 − si,k
for k = 1, 2, . . . ,mi − 1. In other words, the curve of Pi over (0, C]

is made up of mi connected line segments, where the kth segment
is line y = si,k + pi,kx over interval (Bi,k−1, Bi,k], k = 1, 2, . . . ,mi.
We let

m =
1
T

T∑
i=1

mi

be the average number of line segment with different slopes of an
ordering cost function.

We assume that both the initial inventory level at the beginning
of period 1 and the inventory level at the end of period T are zero,
i.e., I0 = IT = 0 (we define period 0 to be a dummy period). The
problem is to decide the quantities of Xi and Ii (1 ≤ i ≤ T ) to satisfy
the demand in each period, so that the total ordering and inventory
cost is minimized. The problem can be formulated as the following
mathematical program:

P : minimize
T∑

i=1

[
Pi(Xi) + Hi(Ii)

]
subject to Ii = Ii−1 + Xi − di (i = 1, 2, . . . , T )

I0 = IT = 0
0 ≤ Xi ≤ C (i = 1, 2, . . . , T )

To help the readers easier follow our algorithm, we provide a
small example E that will be used throughout the paper. Example

E is as follows: T = 6, (d1, d2, d3, d4, d5, d6) = (4, 12, 1, 8, 5, 4),
C = 10; for i = 1, . . . , 6, mi = 2, Bi,1 = 4; Pi(Xi) = 1 + 2Xi if
0 < Xi ≤ 4, Pi(Xi) = 5 + Xi if 4 < Xi ≤ 10, Hi(Ii) = Ii if Ii ≥ 0, and
Hi(Ii) = −2Ii if Ii < 0.

3. Notation and property

We call period i a regeneration period if Ii = 0 (0 ≤ i ≤ T ).
Periods 0 and T are both regeneration periods. Each period i is
called a replenishment period if Xi > 0, a full replenishment period if
Xi = C , and a fractional period if 0 < Xi < C .

Let di,j =
∑j

r=idr be the cumulative demand in periods i, i+
1, . . . , j. Denote ⌈x⌉ as the minimal integer no less than x. For any
1 ≤ i ≤ j ≤ T , let

ni,j =

⌈
di,j
C

⌉
− 1 and Ri,j = di,j − ni,j · C .

For any 1 ≤ i ≤ j ≤ T , we must have

0 < Ri,j ≤ C

if di,j > 0. We define di,j = ni,j = Ri,j = 0 for any i > j.
Denote P0 as the general problem of ELS-CC, i.e., P0 is the same

as P except that the ordering cost functions in P0 are general
concave. We give the following property directly, which is well-
known in the lot-sizing literature (see, for example, [3]).

Lemma 1. There exists an optimal solution to P0 in which for any two
consecutive regeneration periods i − 1 and j (j ≥ i), if there are some
replenishment periods among i, i+1, . . . , j, then there exists a period
t ∈ {i, i+1, . . . , j} such that
(i) no period within {i, i + 1, . . . , j} \ {t} is a fractional period;
(ii) the number of full replenishment periods within {i, i + 1, . . . , j} \

{t} is equal to ni,j; and
(iii) the replenishment quantity in period t equals Ri,j.

Note that P is a special case of P0. Thus, Lemma 1 is valid to
problem P. In our optimal algorithm to P, we only need to consider
those optimal solutions satisfying Lemma 1.

We now define two useful cost quantities that will be used in
our algorithm. Using the same notations in Ou [4], for any 1 ≤ i ≤

j ≤ T and k = 0, 1, . . . , j − i + 1, we define fi,j,k as the minimal
total cost incurred in periods i, i+ 1, . . . , j if i− 1 is a regeneration
period, among i, i+1, . . . , j no period is a fractional period, and the
number of full replenishment periods is equal to k; we also define
f̂i,j,k the same as fi,j,k except that j is a regeneration period instead
of i−1. Let fi,j,k = f̂i,j,k = +∞ if i > j or k ̸∈ {0, 1, . . . , j− i+1}. As
what has been shown by Ou [4], all of the values in {fi,j,k, f̂i,j,k | 1 ≤

i ≤ j ≤ T ; −T ≤ k ≤ T } can be determined recursively in O(T 3)
time. In the following analysis we assume that all of those values
of fi,j,k and f̂i,j,k have been predetermined.

Let Ut = {t, t + 1, . . . , T } for t = 1, 2, . . . , T . For any given
t ∈ {1, 2, . . . , T − 1}, we sequence the values of Rt+1,j for j =

t, t + 1, . . . , T such that

Rt+1,πt (t) ≤ Rt+1,πt (t+1) ≤ · · · ≤ Rt+1,πt (T ), (1)

where πt (t), πt (t + 1), . . . , πt (T ) are a permutation of t, t +

1, . . . , T . Notice that Rt+1,t = 0. By (1), wemust have Rt+1,πt (t) = 0,
i.e., πt (t) = t .

For any given integers i and t with 1 ≤ i ≤ t ≤ T , we consider
quantity C − Ri,t , and let βi,t ∈ {t, t + 1, . . . , T } denote the largest
integer satisfying Rt+1,πt (βi,t ) ≤ C − Ri,t (note that βi,t must exist
since Rt+1,πt (t) = 0 ≤ C − Ri,t ). Provided πt and βi,t , we further
define

Ai,t,2 = {j ∈ Ut | Rt+1,j ≤ C − Ri,t} = {πt (j) | j = t, . . . , βi,t} (2)
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