A polynomial time algorithm to the economic lot sizing problem with constant capacity and piecewise linear concave costs

Jinwen Ou

Management School, Jinan University, Guangzhou, 510632, People's Republic of China

A R T I C L E I N F O

Article history:

Received 28 July 2016
Received in revised form 25 July 2017
Accepted 31 July 2017
Available online 9 August 2017

Keywords:

Algorithm
Economic lot-sizing
Constant capacity
Dynamic programming
Concave ordering costs

Abstract

It is well-known that the classical economic lot-sizing problem with constant capacity and general concave ordering/inventory cost functions can be solved in $O\left(T^{4}\right)$ time (Florian and Klein, 1971). We show that the problem can be solved in $O\left(m T^{3}\right)$ time when the ordering cost functions are piecewise linear concave and have m line segments with different slopes in a time period in average. Our algorithm makes use of the data structure of range minimum query (RMQ).

© 2017 Elsevier B.V. All rights reserved.

1. Introduction

The single-item economic lot-sizing model with constant capacity (ELS-CC) is a classical production planning model. The general ELS-CC problem assumes constant capacity, unrestricted backlogging and general concave ordering, inventory holding and backlogging cost functions. In the literature of lot-sizing research, Florian and Klein [3] have developed an $O\left(T^{4}\right)$ optimal algorithm for the general ELS-CC problem, where T is the number of time periods in the planning horizon. It is still unknown whether the $O\left(T^{4}\right)$ running time complexity of solving the general ELS-CC problem could be reduced. But some direct special cases of ELS-CC can be solved in lower running time complexity. An $O\left(T^{3}\right)$ exact algorithm is presented by van Hoesel and Wagelmans [6] for the special case of ELS-CC when the ordering cost functions are fixed-plus-linear (i.e., a fixed cost is incurred, irrespective of the order size along with variable costs that are proportional with the order size), inventory holding cost functions are linear (but backlogging is not allowed in their model). Later, van Vyve [7] develops an $O\left(T^{3}\right)$ algorithm for the special case of ELS-CC with fixed-pluslinear ordering cost functions and linear inventory holding and backlogging cost functions (backlogging is allowed in his model). Ou [4] presents an $O\left(T^{3}\right)$ algorithm for the special case of ELS-CC with fixed-plus-linear ordering cost functions and general concave inventory holding and backlogging cost functions (backlogging is allowed). In this paper we study the special case of ELS-CC with piecewise linear concave ordering cost functions and general concave inventory holding and backlogging cost functions, where

[^0]http://dx.doi.org/10.1016/j.orl.2017.07.010
0167-6377/@ 2017 Elsevier B.V. All rights reserved.
queries of the form "what is the position of a minimum element in the subarray ranging from i to j ?" After an $O(n)$-time preprocessing on the n objects, it only takes $O(1)$ time to find out the minimum element in the subarray ranging from i to j once the values of i and j are provided. Furthermore, the space complexity of storing the n objects to support $O(1)$-time RMQ is only $O(n)$. A recent excellent article on RMQ is referred to [2].

2. Model

The economic lot-sizing model we study can be described as follows: There are T time periods in the planning horizon. In each period $i=1,2, \ldots, T$, there are a known demand d_{i}, a given inventory cost function H_{i} and a given ordering cost function P_{i}. Let I_{i} denote the inventory level at end of period i, and X_{i} the replenishment quantity in period i. It is required that $0 \leq X_{i} \leq C$ for $i=1,2, \ldots, T$, where C is the given stationary production capacity. Backlogging is allowed. Function H_{i} is assumed to be general concave over intervals $(-\infty, 0]$ and $[0,+\infty)$, respectively, with $H_{i}(0)=0$. Function P_{i} is assumed to be piecewise linear concave over interval $(0, C]$ with m_{i} given breakpoints $B_{i, 1}, B_{i, 2}, \ldots, B_{i, m_{i}}$, where $0<B_{i, 1}<\cdots<B_{i, m_{i}}=C$ (for notational simplicity, we define $B_{i, 0}=0$). Specifically, each P_{i} is fixed-plus-linear over interval $\left(B_{i, k-1}, B_{i, k}\right.$) for any $k=1,2, \ldots, m_{i}$, and we can express function P_{i} as
$P_{i}\left(X_{i}\right)= \begin{cases}0, & \text { if } X_{i}=B_{i, 0} ; \\ s_{i, 1}+p_{i, 1} \cdot X_{i}, & \text { if } B_{i, 0}<X_{i} \leq B_{i, 1} ; \\ s_{i, 2}+p_{i, 2} \cdot X_{i}, & \text { if } B_{i, 1}<X_{i} \leq B_{i, 2} ; \\ \ldots & \text { if } B_{i, m_{i}-1}<X_{i} \leq B_{i, m_{i}} ; \\ s_{i, m_{i}}+p_{i, m_{i}} \cdot X_{i}, & \text { if } B_{i, m_{i}}<X_{i},\end{cases}$
where
$0 \leq s_{i, 1}<s_{i, 2}<\cdots<s_{i, m_{i}}$,
$p_{i, 1}>p_{i, 2}>\cdots>p_{i, m_{i}} \geq 0$,
and
$B_{i, k}=\frac{p_{i, k}-p_{i, k+1}}{s_{i, k+1}-s_{i, k}}$
for $k=1,2, \ldots, m_{i}-1$. In other words, the curve of P_{i} over $(0, C]$ is made up of m_{i} connected line segments, where the k th segment is line $y=s_{i, k}+p_{i, k} x$ over interval $\left(B_{i, k-1}, B_{i, k}\right], k=1,2, \ldots, m_{i}$. We let
$m=\frac{1}{T} \sum_{i=1}^{T} m_{i}$
be the average number of line segment with different slopes of an ordering cost function.

We assume that both the initial inventory level at the beginning of period 1 and the inventory level at the end of period T are zero, i.e., $I_{0}=I_{T}=0$ (we define period 0 to be a dummy period). The problem is to decide the quantities of X_{i} and $I_{i}(1 \leq i \leq T)$ to satisfy the demand in each period, so that the total ordering and inventory cost is minimized. The problem can be formulated as the following mathematical program:
$\mathbf{P}: \quad$ minimize $\sum_{i=1}^{T}\left[P_{i}\left(X_{i}\right)+H_{i}\left(I_{i}\right)\right]$
subject to $\quad I_{i}=I_{i-1}+X_{i}-d_{i} \quad(i=1,2, \ldots, T)$

$$
I_{0}=I_{T}=0
$$

$$
0 \leq X_{i} \leq C \quad(i=1,2, \ldots, T)
$$

To help the readers easier follow our algorithm, we provide a small example \mathbf{E} that will be used throughout the paper. Example
\mathbf{E} is as follows: $T=6,\left(d_{1}, d_{2}, d_{3}, d_{4}, d_{5}, d_{6}\right)=(4,12,1,8,5,4)$, $C=10$; for $i=1, \ldots, 6, m_{i}=2, B_{i, 1}=4 ; P_{i}\left(X_{i}\right)=1+2 X_{i}$ if $0<X_{i} \leq 4, P_{i}\left(X_{i}\right)=5+X_{i}$ if $4<X_{i} \leq 10, H_{i}\left(I_{i}\right)=I_{i}$ if $I_{i} \geq 0$, and $H_{i}\left(I_{i}\right)=-2 I_{i}$ if $I_{i}<0$.

3. Notation and property

We call period i a regeneration period if $I_{i}=0(0 \leq i \leq T)$. Periods 0 and T are both regeneration periods. Each period i is called a replenishment period if $X_{i}>0$, a full replenishment period if $X_{i}=C$, and a fractional period if $0<X_{i}<C$.

Let $d_{i, j}=\sum_{r=i}^{j} d_{r}$ be the cumulative demand in periods $i, i+$ $1, \ldots, j$. Denote $\lceil x\rceil$ as the minimal integer no less than x. For any $1 \leq i \leq j \leq T$, let
$n_{i, j}=\left\lceil\frac{d_{i, j}}{C}\right\rceil-1$ and $R_{i, j}=d_{i, j}-n_{i, j} \cdot C$.
For any $1 \leq i \leq j \leq T$, we must have
$0<R_{i, j} \leq C$
if $d_{i, j}>0$. We define $d_{i, j}=n_{i, j}=R_{i, j}=0$ for any $i>j$.
Denote \mathbf{P}_{0} as the general problem of ELS-CC, i.e., \mathbf{P}_{0} is the same as \mathbf{P} except that the ordering cost functions in \mathbf{P}_{0} are general concave. We give the following property directly, which is wellknown in the lot-sizing literature (see, for example, [3]).

Lemma 1. There exists an optimal solution to \mathbf{P}_{0} in which for any two consecutive regeneration periods $i-1$ and $j(j \geq i)$, if there are some replenishment periods among $i, i+1, \ldots, j$, then there exists a period $t \in\{i, i+1, \ldots, j\}$ such that
(i) no period within $\{i, i+1, \ldots, j\} \backslash\{t\}$ is a fractional period;
(ii) the number of full replenishment periods within $\{i, i+1, \ldots, j\} \backslash$
$\{t\}$ is equal to $n_{i, j}$; and
(iii) the replenishment quantity in period t equals $R_{i, j}$.

Note that \mathbf{P} is a special case of \mathbf{P}_{0}. Thus, Lemma 1 is valid to problem \mathbf{P}. In our optimal algorithm to \mathbf{P}, we only need to consider those optimal solutions satisfying Lemma 1.

We now define two useful cost quantities that will be used in our algorithm. Using the same notations in Ou [4], for any $1 \leq i \leq$ $j \leq T$ and $k=0,1, \ldots, j-i+1$, we define $f_{i, j, k}$ as the minimal total cost incurred in periods $i, i+1, \ldots, j$ if $i-1$ is a regeneration period, among $i, i+1, \ldots, j$ no period is a fractional period, and the number of full replenishment periods is equal to k; we also define $\hat{f}_{i, j, k}$ the same as $f_{i, j_{\lambda} k}$ except that j is a regeneration period instead of $i-1$. Let $f_{i, j, k}=\hat{f}_{i, j, k}=+\infty$ if $i>j$ or $k \notin\{0,1, \ldots, j-i+1\}$. As what has been shown by Ou [4], all of the values in $\left\{f_{i, j, k}, \hat{f}_{i, j, k} \mid 1 \leq\right.$ $i \leq j \leq T ;-T \leq k \leq T\}$ can be determined recursively in $O\left(T^{3}\right)$ time. In the following analysis we assume that all of those values of $f_{i, j, k}$ and $\hat{f}_{i, j, k}$ have been predetermined.

Let $U_{t}=\{t, t+1, \ldots, T\}$ for $t=1,2, \ldots, T$. For any given $t \in\{1,2, \ldots, T-1\}$, we sequence the values of $R_{t+1, j}$ for $j=$ $t, t+1, \ldots, T$ such that
$R_{t+1, \pi_{t}(t)} \leq R_{t+1, \pi_{t}(t+1)} \leq \cdots \leq R_{t+1, \pi_{t}(T)}$,
where $\pi_{t}(t), \pi_{t}(t+1), \ldots, \pi_{t}(T)$ are a permutation of $t, t+$ $1, \ldots, T$. Notice that $R_{t+1, t}=0 . \mathrm{By}(1)$, we must have $R_{t+1, \pi_{t}(t)}=0$, i.e., $\pi_{t}(t)=t$.

For any given integers i and t with $1 \leq i \leq t \leq T$, we consider quantity $C-R_{i, t}$, and let $\beta_{i, t} \in\{t, t+1, \ldots, T\}$ denote the largest integer satisfying $R_{t+1, \pi_{t}\left(\beta_{i, t}\right)} \leq C-R_{i, t}$ (note that $\beta_{i, t}$ must exist since $\left.R_{t+1, \pi_{t}(t)}=0 \leq C-R_{i, t}\right)$. Provided π_{t} and $\beta_{i, t}$, we further define
$A_{i, t, 2}=\left\{j \in U_{t} \mid R_{t+1, j} \leq C-R_{i, t}\right\}=\left\{\pi_{t}(j) \mid j=t, \ldots, \beta_{i, t}\right\}$

https://daneshyari.com/en/article/5128383

Download Persian Version:
https://daneshyari.com/article/5128383

Daneshyari.com

[^0]: E-mail address: toujinwen@jnu.edu.cn.

