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a b s t r a c t

We show that relative priorities can reduce queueing costs in systems that are multi-server and multi-
class as long as customers choose their routing policy strategically. This is demonstrated in two models
withmulti-class Poisson arrivals and parallel memoryless servers with linear cost functions of class mean
waiting times. For each model we investigate the Nash equilibria under a given relative priority rule. The
central planner’s optimal policy is characterized and shown to be of strictly relative priorities in some
cases.

© 2017 Elsevier B.V. All rights reserved.

1. Introduction

It iswell known that the Cµ-rule is optimal in centrally planned
queueing systems. Specifically, suppose that there is a single-
server queue that is fed by various types of customerswho arrive in
accordance with a Poisson process. Let xi be the mean service time
of a class i customer and Ci be his waiting cost per unit of time.
The Cµ-rule says that of all non-preemptive queue regimes, the
one that minimizes the mean total (undiscounted) waiting cost is
the one that gives absolute priority based on a decreasing order of
Ci/xi. This means that upon service completion, the next customer
to enter service should be one whose parameter Ci/xi among all
other customers present is maximal. It is of course not important
which customer among those of this maximal class will be the
one to enter. This observation holds also regardless of how many
customers of each class are present. See, e.g., [6], p. 125. Suppose
there are n classes of customers. Then there exists n! absolute
priority orderings of the classes and, as said above, the optimal one
among them is the one based on the Cµ-rule.

In the above framework the introduction of the option of using
lotteries does not change anything. Specifically, suppose that one
is not limited to the n! policies which prioritize the classes, but one
is allowed to perform a lottery regarding who should enter next.
Yet, under this extended set of policies the optimal policy is still
the one based on the Cµ rule. This may lead one to conjecture that
there is no need for strategies involving lotteries when looking for
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optimization in queues. However, this conjecture is false. In [4]
an example is shown that if customers behave strategically, then
a central planner might have such strategy that yields a profit
that is strictly higher than any strategy without lotteries. In this
example each customer has the option ofwhether to join the queue
or not. Joining is rewarding but it comes with a class-dependent
entry fee (in addition to the waiting cost). A profit maximizer who
collects the entry fees can assign relative priority parameters to the
customers that are based on their class. The next to enter service
is selected by a lottery that gives customers entrance probabilities
that are proportional to their parameters. As it turns out, the prior-
ity parameters affect the joining rate at various classes, which then
leads to the corresponding profits. Fine tuning of these parameters
leads to an increase in the profits.

This paper shows once again how useful such a relative priority
scheme can be in queueing models that are multi-server in ad-
dition to being multi-class. To this end, we consider two models.
The first is a W-shaped model; see Fig. 1 below. In this model
there are two classes of customers and three servers. Each class of
customers has its dedicated server and one of the servers can serve
both classes.

The second model is an M-shaped model; see Fig. 4 below. In
this model there are three classes of customers and two servers.
Each server has its exclusive class of customers and one of the
classes can be served by both servers. Details are given below.

In a system with centralized planning, the decision makers
choose the rules for allocating servers to demand classes so as
to achieve the best possible system objectives. In this paper we
use these settings to motivate the two models we consider, but in
our approach customers select the server to balance their waiting
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Fig. 1. The Wmodel.

times (if possible) between the servers that are available to them.
One may think that giving priority to the class with the highest
cost to mean service time ratio (the Cµ rule) is optimal, but as we
show, this is not necessarily the case. It might be better to give
each class only relative priority (in the sense to be defined later).
This seeming paradox can be attributed to the fact that customers
behave strategically.

2. Relative priorities, notations, and auxiliary results

In the two models studied in this paper, some of the memory-
less servers serve two independent streams of Poisson arrivals of
customers. The entrance regime for these servers is that of relative
priority. By that we mean that whenever the server is ready to
commence servicing the next customer, and there are ni customers
of type i in the queue in front of him, i = 1, 2, then the next to enter
service is the one at the head of the line of type-i customers with
probability niqi/(n1q1 + n2q2), where qi ≥ 0 is the relative priority
parameter of type-i customers, i = 1, 2.We scale these parameters
so that q1 + q2 = 1.

Consider a server with exponentially distributed service times
with rate µ and let Wi(q, λ1, λ2) be the corresponding mean wait-
ing time (service inclusive) of type-i customers, i = 1, 2, given that
the priority parameter of type-1 customers is q1 = q (and that of
type 2 is q2 = 1 − q) and the arrival rate of type-i customers is λi,
i = 1, 2. Based on [5] we learn that this mean waiting time equals

Wi(q, λ1, λ2) ≡
1 − ρqi

(1 − ρ)(1 − qρ1 − (1 − q)ρ2)
ρ

µ
+

1
µ

, (1)

where ρ is the traffic intensity, ρi = λi/µ, i = 1, 2, and, clearly,
ρ = ρ1 + ρ2. Moreover, the system is stable if and only if ρ < 1,
which is assumed.

In the following lemmaswe introduce some algebraic results on
these mean waiting times. The proofs are technical and are avail-
able online at https://sites.google.com/site/binyaminoz/RPSM.pdf.

Lemma 2.1. The following inequalities hold:

1. ∂Wi
∂λj

> 0, i = 1, 2, j = 1, 2

2. ∂W1
∂λ1

∂W2
∂λ2

−
∂W1
∂λ2

∂W2
∂λ1

> 0.

Lemma 2.2. The derivatives of the mean waiting times with respect
to the relative priority parameter q satisfy
∂W1

∂q
< 0 and

∂W2

∂q
> 0

if λ1, λ2 > 0.

Suppose that the social cost associated with type-i customers
is ci ≥ 0 per customer per unit of time, i = 1, 2. The total cost

associated with a server that uses the relative priority discipline
with parameter q is hence

C(c1, c2, q, λ1, λ2) =

∑
i=1,2

ciλiWi(q, λ1, λ2). (2)

Lemma2.3. The derivative of the total costwith respect to the relative
priority parameter q satisfies
∂C
∂q

= (c1 − c2)λ1
∂W1

∂q
= (c2 − c1)λ2

∂W2

∂q
.

Remark. Lemma 2.3 combined with Lemma 2.2 shows that the
function C ismonotone in q. Moreover, it follows thatminimizing C
is done by setting q = 1, i.e., absolute priority for type-1 customers,
if c1 > c2, and q = 0, i.e., absolute priority for type-2 customers, if
c1 < c2, and that, of course, agrees with the cµ rule.

3. The Wmodel

Consider the followingmemoryless three-servermodel. Server-
i serves at the rate of µi, 1 ≤ i ≤ 3. There are two independent
streams of Poisson arrivals, stream-i with rate λi, i = 1, 2. A
fraction of 1−pi of the customers of stream i go to server i, i = 1, 2.
The others (with a total rate of p1λ1+p2λ2) go to server 3. See Fig. 1.

Server i uses the first-come first-served entrance policy, i =

1, 2. The entrance regime for server 3 is that of relative priority,
with priority parameter q1 = q for customers from stream 1,
0 ≤ q ≤ 1, and priority parameter q2 = 1 − q for customers of
stream 2.

It is well known that the mean waiting time (service inclusive)
at server i equals

W (i)(pi) =
1

µi − (1 − pi)λi
=

1
µi(1 − ρ(i))

, i = 1, 2,

where ρ(i)
= (1−pi)λi/µi is the traffic intensity of server i, i = 1, 2.

The corresponding mean waiting time in server 3 is given in (1)
above, i.e.,

W (3)
i (q, λ1p1, λ2p2) ≡

1 − ρ(3)qi
(1 − ρ(3))(1 − qρ(3)

1 − (1 − q)ρ(3)
2 )

ρ(3)

µ3

+
1
µ3

, i = 1, 2,

where ρ
(3)
i = λipi/µ3, i = 1, 2 and ρ(3)

= ρ
(3)
1 + ρ

(3)
2 .

We are interested in the following decision-making model. A
player, called a central planner, decides on the parameter q (we
will define his selection criterion shortly). This value is announced
and becomes known to the arrivals. The arrivals, independently of
each other, have to decide which server to seek service from (but
recall that customers of type i can choose only between server i and
server 3, i = 1, 2).We assume that decisionmaking here is as in [1]
(see also [2,3]); namely, customers behave in a Nash equilibrium
way. By that we mean that if all customers of type i join server 3
with probability pi(q), while all others go to server i, i = 1, 2,
then (under the resulting steady-state conditions) an individual
customer cannot do better by using a different lottery between
his possible servers. This means that if p1(q) = 1 (respectively,
p1(q) = 0), then a type-1 customer is not worse off by joining
server 3 (respectively, server 1), given that all type-i customers do
the same, while all type-2 customers select server 3 with proba-
bility p2(q). Using the above notation, this means that W (1)(1) >

W (3)
1 (q, λ1, λ2p2(q)) (respectively, W (1)(0) < W (3)

1 (q, 0, λ2p2(q))).
As importantly, in the case where 0 < p1(q) < 1, this customer
is indifferent between the two options (i.e., they come with the
same mean waiting time), given that all type-1 customers use this
strategy and given that all type-2 customers select server 3 with
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