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a b s t r a c t

We analyze a price-setting newsvendor problem with an additive–multiplicative demand. We show that
the unimodality of the newsvendor profit function holds when the underlying random term has an
increasing failure rate and the demand functions satisfy certain concavity conditions. Furthermore, we
show that the optimal price decreases in the order quantity. Finally,we compare our optimality conditions
with those existing in the literature.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

Integrating pricing and inventory replenishment decisions un-
der demand uncertainty has proved to be a successful operations
strategy of many firms including Amazon, Dell, Walmart and J.C.
Penney [4,6]. By adopting proactive pricing, firms can bettermatch
supply with demand, which leads to significant profit increases.
The benefits of jointly deciding pricing and inventory replenish-
ment level have also been well documented in various academic
studies [5,8,9].

The building block for joint inventory and pricing decisions
research is the newsvendor model with pricing. The major dif-
ficulty in studying this problem is to establish concavity or uni-
modality of the profit function. Although many analytical results
on the optimality conditions have been developed in recent years
[10,12,13,17], the existing literature often makes strong assump-
tions on the demand function forms and demand uncertainty dis-
tributions, such as one parameter additive or multiplicative only
demand model and specific uncertainty distributions. These as-
sumptions simplify analysis, but their limitations in capturing re-
ality limit their applicability in practice.

To address this issue, we use a general additive–multiplicative
demand model to analyze the problem of joint inventory and pric-
ing decisions. To derive the optimality conditions, we make two
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assumptions: (1) the random term in the demand has an increasing
failure rate (IFR); (2) the demand function satisfies certain concav-
ity conditions. [12] studies the sameproblemby first solving for the
optimal order quantity and then finding the optimal price. It iden-
tifies three conditions to be met for establishing the optimality of
the profit function: (1) the riskless profit function is log-concave;
(2) the coefficient of variation is log-convex and (3) the distribution
of the random term satisfies a specific condition. [10] introduces
the concept of lost-sale elasticity. Assuming the random term has
IFR distribution, it shows that when the lost-sale elasticity satis-
fies certain conditions, the concavity or unimodality of the profit
function is implied. [14] conducts a similar analysis of the prob-
lem from the price elasticity view point. It shows that when both
price elasticities of the location and scale parameters in demand
are increasing in price, and the elasticity of the location parameter
increases faster than the price elasticity of the scale parameter, the
unimodality of the profit function is obtained. [1] analyzes a risk-
averse price-dependent newsvendor and shows the concavity of
the profit functions for additive and multiplicative demands. A fo-
cus of the paper is to elaborate the difference in pricing and order-
ing behaviors of the risk averse and risk neutral newsvendors. [17]
obtains the unimodality when the random term has log-concave
distribution and the demand functions satisfy certain conditions.
Compared with the aforementioned studies, our proof is new and
the resulting optimality conditions are different. As our analysis
unfolds,we show that our optimality conditions and the conditions
obtained in the existing literature do not imply each other. In fact,
our result complements the existing results.
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The rest of this paper is organized as follows. Section 2 presents
the newsvendor pricing model and our analytical results. We
discuss our results by comparing them with the existing literature
in Section 3.

2. Model and analysis

In this section, we present the price-setting newsvendor model
and derive conditions for the optimality of the firm’s expected
profit function.

2.1. Model

A risk neutral firm buys a product at a unit cost c and sells the
product to customers at a retail price p ∈ [p, p] over a single selling
season. The demand during the selling season depends on the re-
tail price p and is random. Let D(p, ϵ) denote the price-dependent
demand, where ϵ is a random variable. The firm simultaneously
decides the retail price p and the order quantity y at the begin-
ning of the selling season before observing the demand. After the
demandmaterializes, the firm satisfies the demand with the prod-
uct’s available stock. If the firm does not have enough stock, that is,
y ≤ D(p, ϵ), the unsatisfied demand is lost with no penalty for lost
sales. The unsold inventory, if any, is salvaged at zero value. Note
that our analysis can be extended easily to the cases of nonzero
penalty and nonzero salvage value.

As in [7,8,12,17], we consider the additive–multiplicative
demand model

D(p, ϵ) = µ(p) + σ(p)ϵ, (1)

where µ(·) ≥ 0 and σ(·) ≥ 0 are deterministic functions of
price p, and ϵ is a nonnegative random variable with mean µ̃
and standard deviation σ̃ . This demand model generalizes the
widely used multiplicative or additive only demand models. In
our generalized model, the retail price can have different effects
on the location and scale parameters of the demand. Whereas, in
the multiplicative only models, the price has the same effects on
the demand mean and standard deviation, i.e., the coefficient of
variation is independent of price.

Let f (·) and F(·) denote the density and cumulative distribution
functions of ϵ, respectively. In addition, let F̄(·) = 1 − F(·). We
define G(·|p) as the conditional distribution of D(p, ϵ) for a given
retail price p. Thus, G(x|p) = F


x−µ(p)
σ (p)


. The failure rate of ϵ is

defined as h(·) = f (·)/F̄(·).
For a given retail price p and order quantity y, the firm’s

expected profit (profit, hereafter) is

π(y, p) = p Emin{y, µ(p) + σ(p)ϵ} − cy. (2)

The firm determines y ∈ [0, ∞) and p ∈ [p, p] to maximize
its profit, that is maxy,p π(y, p) = p Emin{y, µ(p) + σ(p)ϵ} −

cy. Unfortunately, the concavity of the profit function does not
hold under general conditions. Thus, researchers have tried to
establish conditions under which the profit function is quasi-
concave (i.e., unimodal) or log-concave (since the log-concavity
guarantees unimodality [12]).

2.2. Analysis of the optimality conditions

To derive the optimality conditions, wemake two assumptions:
(i) the random term in the demand has an increasing failure
rate (IFR); (ii) the demand function satisfies certain concavity
conditions.

Assumption (i) the distribution of ϵ has an increasing failure
rate (IFR), that is, f (·)/F̄(·) is an increasing function.

Assumption (ii) the functions µ(p) and σ(p) are twice continu-
ously differentiable and strictly decreasing in price p. In addition,
pµ(p) and pσ(p) are concave in p.

Most distributions commonly used in the operations manage-
ment literature, such as normal, gamma, uniform and logistic dis-
tributions have IFR; see [3,10,11,15]. As our analysis unfolds, we
show that the IFR distribution assumption leads to a new set of op-
timality conditions for the unimodality of the profit function. The
assumption of the demand to be decreasing in price is standard.
The concavity assumption implies that the revenue function is con-
cave in price, e.g.,marginal revenue is decreasing in retail price. It is
also a widely adopted assumption in the operations management
literature [10,18].

To facilitate analysis, we rewrite the profit function as

π(y, p) = pEmin{y, µ(p) + σ(p)ϵ} − cy
= pσ(p)Emin{y/σ(p), κ(p) + ϵ} − cy

= pσ(p)S(y, p) − cy, (3)

where κ(p) = µ(p)/σ (p) and S(y, p) = Emin{y/σ(p), κ(p) + ϵ}.
For ease of exposition, define Θ(x) =


∞

x (u− x)f (u)du. The profit
function can then be written as

π(y, p) = pσ(p)

κ(p) + [µ̃ − Θ(y/σ(p) − κ(p))]


− cy. (4)

Note that [µ̃−Θ(y/σ(p)−κ(p))] =
 y/σ(p)−κ(p)
0 F̄(t)dt ≥ 0. Since

ϵ is a nonnegative random variable, for any given p and y, we have
y ≥ µ(p). Thus, y/σ(p) − κ(p) ≥ 0.

Define V (z) =

 z
0 tf (t)dt

[µ̃−Θ(z)] and U(z) =
F(z)

[µ̃−Θ(z)] . To establish
the optimality conditions for the profit function, we need the
monotone property of V (z) and U(z) stated in the following
lemma.

Lemma 1 (Monotone Property).Under Assumptions (i) and (ii), both
V (z) and U(z) are nondecreasing functions of z and 0 ≤ V (z) < 1.

Proof of Lemma 1. Under Assumption (i), the distribution of ϵ has
an IFR, so it also has an increasing generalized failure rate (IGFR). It
follows that V (z) is nondecreasing in z, which is proved in [15].
Since V ′(z) ≥ 0 and limz→∞ V (z) =


∞

0 tf (t)dt
∞

0 F̄(t)dt
= 1, we have

0 ≤ V (z) < 1.
Next we prove the monotone property of U(z). Taking the first

derivative of U(z), we have

U ′(z) =
f (z)[µ̃ − Θ(z)] − F(z)F̄(z)

[µ̃ − Θ(z)]2

=
f (z)

 z
0 F̄(t)dt − F(z)F̄(z)
[µ̃ − Θ(z)]2

= [F̄(z)]
h(z)

 z
0 F̄(t)dt − F(z)

[µ̃ − Θ(z)]2
. (5)

Define △(z) = h(z)
 z
0 F̄(t)dt − F(z). We have limz→0 △(z) = 0.

Further △
′(z) = h′(z)

 z
0 F̄(t)dt ≥ 0, and therefore, when the

distribution of ϵ has an IFR, we have U ′(z) ≥ 0. This completes
the proof.

We are now ready to present the optimality conditions.

Theorem 1 (Optimality Conditions). Under Assumptions (i) and (ii),
there exists a unique maximizer (ŷ, p̂) which maximizes the firm’s
expected profit function. Furthermore, the optimal price p̂(y) for any
given order quantity y is decreasing in y.
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