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a budget constraint (BBQP). When compared with the recent two linearizations for (BBQP), it not only
provides a tighter relaxation at the root node, but also has a much better computational performance for
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1. Introduction

The budget-constrained binary quadratic programming prob-
lem (BBQP) is to minimize a general quadratic function with binary
variables and an additional budget constraint. It can be formulated
as follows:

n n
min x'Qx = Z Z qijXiX; (1)

i=1 j=1

s.t. xeX = {xle'x=p,x € {0, 1}"}, (2)
where Q = (g;) is an n x n symmetric matrix, e = (1,..., nr
and p € {1, ..., n}is a given integer budget. It could be assumed

that p < n/2, since otherwise we can replace all the variables
xi(i=1,...,n)withy; =1—x;.

(BBQP) is NP-hard, as its special applications include the
p-dispersion-sum problem [4,9,14] in facility location, the dense
k-subgraph problem [5] and the p-clique problem [11,12] in graph
theory.

The linearization techniques for solving binary quadratic
programming problems were first introduced by Zangwill [18]
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and Watters [16], and then advanced by many researchers,
see for example, Glover and Woolsey [7,8], Glover [6], Adams
and Sherali [1,2] and Sherali and Smith [15]. For (BBQP),
Chaovalitwongse et al. [3] proposed a linearization technique.
Recently, it has been improved by He et al. [10].

Chaovalitwongse et al.’s linearization (CL) is equivalent to
(BBQP) when Q is a nonnegative matrix. However, we prove in
this paper that the linear programming lower bound of (CL) is
always zero. Then, we use a counterexample to show that the
improved version of (CL), He et al.’s linearization (HL), failed to
be equivalent to (BBQP) when Q is not nonnegative. Applying
Glover's linearization scheme to (BBQP) yields a new linearization,
denoted by (GL). It is always equivalent to (BBQP) without
any assumption on Q. For the quadratic assignment problem,
the corresponding linearization is also known as Xia-Yuan
linearization [17]. Compared with the two recent linearizations
(CL)and (HL), our new linearization (GL) not only provides a tighter
relaxation at the root node, but also has a much better numerical
performance for globally solving (BBQP).

The remainder is organized as follows. Section 2 studies the
two existing linearization techniques. In Section 3, we propose
a new linearization method. Section 4 presents the numerical
comparison.

Notations Let v(-) be the optimal value of (-). conv(X) is the
convex hull of X. R(-) is the linear programming relaxation of (-).
For a matrix Q = (qy), [Qllc = MaXie(1,..m 2 iq lq5. Q > 0
means that g;; > Oforalliandj. Notation 1 : nstandsfor 1, ..., n.
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2. Two existing linearization techniques for (BBQP)

We first present and then study the two existing linearization
techniques for (BBQP) due to Chaovalitwongse et al. [3] and He
et al. [10], respectively.

Chaovalitwongse et al. [3] proposed the following linearization
for (BBQP), denoted by (CL):

s.t. x € X, (3)
n
Zq,-jxj—y,-—sizo, i=1:n, (4)
j=1
yi<u(l—x), i=1:n, (5)
yi=0, >0, i=1:n, (6)
where 1t = ||Q||s. Under the assumption Q > 0, it was proved

that v(CL) = v(BBQP) [3]. However, as shown in the following,
under the assumption n > 2p, the linear programming relaxation
of (CL) at the root node always gives a trivial lower bound: zero.

Theorem 2.1. Suppose Q > 0 and n > 2p. Then, v(R(CL)) = 0.

’n
> 0fori = 1: n.lItis sufficient to show that (%, ¥, ) is a feasible
solution of R(CL), which is obtained by replacing the constraint (3)
with x € conv(X). The inequality (4) trivially holds at (X, ¥, s). The
inequality (5) holds since

n
p n—p
=1 p
p n
< (Z%-M) <0,
=

where the two inequalities follow from the assumptionn > 2p and
the definition of u, respectively. The proof is complete. O

Proof. LetX = (2, ... p)T,§: ©,...,00  andy; = ED I

Vi—n(1-%) =

S

Recently, He et al. [ 10] improved (CL) to the following linearization,
denoted by (HL):

n
min Z (si — ox;)
i=1

s.t. x€X,
n

DG —yi—si+to=0 i=1:n
=

Vi< pu(l—=x),
yi >0, si=0,

i=1:n,
i=1:n,

where © and o are constants: @ = ||Q|lcc and 0 = u —
maxi—1.n maxxex{zl'f’:] q;ix;}. It was concluded in corollary 1in[10]
that v(BBQP) = wv(HL). However, this is true only when Q > 0.
Below is a counterexample.

Letn =4,p=2and

0 -2 0 0
-2 0 0 0
Q=19 o0 0 1
0 0 1 0

We have v(BBQP) = —4 < v(HL) = 2.

3. Glover’s linearization for (BBQP)

Based on Glover’s linearization scheme, we propose a “new”
linearization for (BBQP). We first reformulate the objective
function (1) as:

Xn: Z qiixiXj = Z ((Z q,-jxj) Xi + q,-l-xl) .

i=1 j=1 i=1 A

Then, it is not difficult to verify that the equality

(Z Qijxj) X; = max {lfxi, wxi — U+ Y Qijxj}
j#i J#i

holds for any x € X, where

p
U= max Y aiy = ) dig.
J# j=1
p—1
i = min iXj =
i XXt ; qijX; ; Qi (j)

@; be the permutation of {1 : n} such that gi,,q1) > qiy2) =
> iy (i is redefined as 0), and ¢; be the permutation of
{1,...,i—1,i+1,...,n}suchthat gip;(1) < Gig;2) < - * < Gigy()-
Fori = 1 n, introducing the new variable z; to replace

Qs i qix;j)x; yields the following “new” linearization, denoted by
(GL):

n
min Y (zi + gix:)
i1

s.t. x € X,
zi>lix, i=1,...,n, (7)
zizuixi—ui—i-Zqijxj, i=1:n (8)
J#i

and the following result on the equivalence:

Theorem 3.1. v(GL) = v(BBQP).

Next, we can show that the linear programming relaxation of (GL)
in general is at least as tight as that of (HL) at the root node.

Theorem 3.2. When Q > 0, v(R(GL)) > v(R(HL)).
Proof. Setting s; = z; + ox; + g;x; in (HL) yields the equivalent
formulation:

n
min Z(Zi + giixi)

i=1

s.t. xeX,
Zi > —oXi — qiiX;, i=1:n, 9)
szZqijxj—i-a—ax,-, i=1:n, (10)

JF#
=Y gx+(p—o)x—1, i=1:n (11)

J#

Notice that R(GL) and R(HL) are obtained by replacing x € X
with x € conv(X) in (GL) and (HL), respectively. Let (x,z) be
any feasible solution of R(GL). Then, either the inequality (9) or
the inequality (11) is active at (x, z). Since Q > 0,0 > 0 and
0 <x; < 1fori = 1: n, for the right-hand side of (9), we have

—O0Xi — (iiXj = —0X = E qiiXj + o0 — oxi,
J#
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