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a b s t r a c t

Glover’s linearization technique is revisited for solving the binary quadratic programming problem with
a budget constraint (BBQP). When compared with the recent two linearizations for (BBQP), it not only
provides a tighter relaxation at the root node, but also has a much better computational performance for
globally solving (BBQP).

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

The budget-constrained binary quadratic programming prob-
lem (BBQP) is tominimize a general quadratic functionwith binary
variables and an additional budget constraint. It can be formulated
as follows:

min xTQx =

n
i=1

n
j=1

qijxixj (1)

s.t. x ∈ X :=

x|eT x = p, x ∈ {0, 1}n


, (2)

where Q = (qij) is an n × n symmetric matrix, e = (1, . . . , 1)T
and p ∈ {1, . . . , n} is a given integer budget. It could be assumed
that p ≤ n/2, since otherwise we can replace all the variables
xi (i = 1, . . . , n) with yi := 1 − xi.

(BBQP) is NP-hard, as its special applications include the
p-dispersion-sum problem [4,9,14] in facility location, the dense
k-subgraph problem [5] and the p-clique problem [11,12] in graph
theory.

The linearization techniques for solving binary quadratic
programming problems were first introduced by Zangwill [18]
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and Watters [16], and then advanced by many researchers,
see for example, Glover and Woolsey [7,8], Glover [6], Adams
and Sherali [1,2] and Sherali and Smith [15]. For (BBQP),
Chaovalitwongse et al. [3] proposed a linearization technique.
Recently, it has been improved by He et al. [10].

Chaovalitwongse et al.’s linearization (CL) is equivalent to
(BBQP) when Q is a nonnegative matrix. However, we prove in
this paper that the linear programming lower bound of (CL) is
always zero. Then, we use a counterexample to show that the
improved version of (CL), He et al.’s linearization (HL), failed to
be equivalent to (BBQP) when Q is not nonnegative. Applying
Glover’s linearization scheme to (BBQP) yields a new linearization,
denoted by (GL). It is always equivalent to (BBQP) without
any assumption on Q . For the quadratic assignment problem,
the corresponding linearization is also known as Xia–Yuan
linearization [17]. Compared with the two recent linearizations
(CL) and (HL), our new linearization (GL) not only provides a tighter
relaxation at the root node, but also has a much better numerical
performance for globally solving (BBQP).

The remainder is organized as follows. Section 2 studies the
two existing linearization techniques. In Section 3, we propose
a new linearization method. Section 4 presents the numerical
comparison.

Notations Let v(·) be the optimal value of (·). conv(X) is the
convex hull of X . R(·) is the linear programming relaxation of (·).
For a matrix Q = (qij), ∥Q∥∞ = maxi∈{1,...,n}

n
j=1 |qij|. Q ≥ 0

means that qij ≥ 0 for all i and j. Notation 1 : n stands for 1, . . . , n.
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2. Two existing linearization techniques for (BBQP)

We first present and then study the two existing linearization
techniques for (BBQP) due to Chaovalitwongse et al. [3] and He
et al. [10], respectively.

Chaovalitwongse et al. [3] proposed the following linearization
for (BBQP), denoted by (CL):

min
n

i=1

si

s.t. x ∈ X, (3)
n

j=1

qijxj − yi − si = 0, i = 1 : n, (4)

yi ≤ µ (1 − xi) , i = 1 : n, (5)
yi ≥ 0, si ≥ 0, i = 1 : n, (6)

where µ = ∥Q∥∞. Under the assumption Q ≥ 0, it was proved
that v(CL) = v(BBQP) [3]. However, as shown in the following,
under the assumption n ≥ 2p, the linear programming relaxation
of (CL) at the root node always gives a trivial lower bound: zero.

Theorem 2.1. Suppose Q ≥ 0 and n ≥ 2p. Then, v(R(CL)) = 0.

Proof. Letx =
 p
n , . . . ,

p
n

T
,s = (0, . . . , 0)T andyi =

p
n

n
j=1 qij

≥ 0 for i = 1 : n. It is sufficient to show that (x,y,s) is a feasible
solution of R(CL), which is obtained by replacing the constraint (3)
with x ∈ conv(X). The inequality (4) trivially holds at (x,y,s). The
inequality (5) holds since

yi − µ (1 −xi) =
p
n


n

j=1

qij −
n − p
p

µ



≤
p
n


n

j=1

qij − µ


≤ 0,

where the two inequalities follow from the assumption n ≥ 2p and
the definition of µ, respectively. The proof is complete. �

Recently, He et al. [10] improved (CL) to the following linearization,
denoted by (HL):

min
n

i=1

(si − σ xi)

s.t. x ∈ X,
n

j=1

qijxj − yi − si + σ = 0, i = 1 : n,

yi ≤ µ (1 − xi) , i = 1 : n,
yi ≥ 0, si ≥ 0, i = 1 : n,

where µ and σ are constants: µ = ∥Q∥∞ and σ = µ −

maxi=1:n maxx∈X {
n

j=1 qijxj}. It was concluded in corollary 1 in [10]
that v(BBQP) = v(HL). However, this is true only when Q ≥ 0.
Below is a counterexample.

Let n = 4, p = 2 and

Q =

 0 −2 0 0
−2 0 0 0
0 0 0 1
0 0 1 0

 .

We have v(BBQP) = −4 < v(HL) = 2.

3. Glover’s linearization for (BBQP)

Based on Glover’s linearization scheme, we propose a ‘‘new’’
linearization for (BBQP). We first reformulate the objective
function (1) as:

n
i=1

n
j=1

qijxixj =

n
i=1


j≠i

qijxj


xi + qiixi


.

Then, it is not difficult to verify that the equality
j≠i

qijxj


xi = max


lixi, uixi − ui +


j≠i

qijxj


holds for any x ∈ X , where

ui = max
x∈X


j≠i

qijxj =

p
j=1

qiϕi(j),

li = min
x∈X, xi=1


j≠i

qijxj =

p−1
j=1

qiφi(j),

ϕi be the permutation of {1 : n} such that qiϕi(1) ≥ qiϕi(2) ≥

· · · ≥ qiϕi(n) (qii is redefined as 0), and φi be the permutation of
{1, . . . , i−1, i+1, . . . , n} such that qiφi(1) ≤ qiφi(2) ≤ · · · ≤ qiφi(n).

For i = 1 : n, introducing the new variable zi to replace
(


j≠i qijxj)xi yields the following ‘‘new’’ linearization, denoted by
(GL):

min
n

i=1

(zi + qiixi)

s.t. x ∈ X,

zi ≥ lixi, i = 1, . . . , n, (7)

zi ≥ uixi − ui +

j≠i

qijxj, i = 1 : n (8)

and the following result on the equivalence:

Theorem 3.1. v(GL) = v(BBQP).

Next, we can show that the linear programming relaxation of (GL)
in general is at least as tight as that of (HL) at the root node.

Theorem 3.2. When Q ≥ 0, v(R(GL)) ≥ v(R(HL)).

Proof. Setting si = zi + σ xi + qiixi in (HL) yields the equivalent
formulation:

min
n

i=1

(zi + qiixi)

s.t. x ∈ X,

zi ≥ −σ xi − qiixi, i = 1 : n, (9)

zi ≤


j≠i

qijxj + σ − σ xi, i = 1 : n, (10)

zi ≥


j≠i

qijxj + (µ − σ) (xi − 1) , i = 1 : n. (11)

Notice that R(GL) and R(HL) are obtained by replacing x ∈ X
with x ∈ conv(X) in (GL) and (HL), respectively. Let (x, z) be
any feasible solution of R(GL). Then, either the inequality (9) or
the inequality (11) is active at (x, z). Since Q ≥ 0, σ ≥ 0 and
0 ≤ xi ≤ 1 for i = 1 : n, for the right-hand side of (9), we have

−σ xi − qiixi ≤ −σ xi ≤


j≠i

qijxj + σ − σ xi,
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