ELSEVIER

Contents lists available at ScienceDirect

Operations Research Letters

journal homepage: www.elsevier.com/locate/orl

On linearization techniques for budget-constrained binary quadratic programming problems

Mei-Jia Yang^a, Yong Xia^{a,*}, Hui-Min Zou^b

- ^a State Key Laboratory of Software Development Environment, LMIB of the Ministry of Education, School of Mathematics and System Sciences, Beihang University, Beijing, 100191, PR China
- ^b Beijing Polytechnic, Beijing, 100176, PR China

ARTICLE INFO

Article history:
Received 1 February 2016
Received in revised form
2 September 2016
Accepted 2 September 2016
Available online 10 September 2016

Keywords:
Binary quadratic programming
Budget constraint
Linearization
Linear programming relaxation

ABSTRACT

Glover's linearization technique is revisited for solving the binary quadratic programming problem with a budget constraint (BBQP). When compared with the recent two linearizations for (BBQP), it not only provides a tighter relaxation at the root node, but also has a much better computational performance for globally solving (BBQP).

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

The budget-constrained binary quadratic programming problem (BBQP) is to minimize a general quadratic function with binary variables and an additional budget constraint. It can be formulated as follows:

$$\min x^{T} Q x = \sum_{i=1}^{n} \sum_{i=1}^{n} q_{ij} x_{i} x_{j}$$
 (1)

s.t.
$$x \in X := \{x | e^T x = p, x \in \{0, 1\}^n \},$$
 (2)

where $Q = (q_{ij})$ is an $n \times n$ symmetric matrix, $e = (1, ..., 1)^T$ and $p \in \{1, ..., n\}$ is a given integer budget. It could be assumed that $p \le n/2$, since otherwise we can replace all the variables x_i (i = 1, ..., n) with $y_i := 1 - x_i$.

(BBQP) is NP-hard, as its special applications include the p-dispersion-sum problem [4,9,14] in facility location, the dense k-subgraph problem [5] and the p-clique problem [11,12] in graph theory.

The linearization techniques for solving binary quadratic programming problems were first introduced by Zangwill [18]

E-mail addresses: 15201644541@163.com (M.-J. Yang), dearyxia@gmail.com (Y. Xia), 13161563408@163.com (H.-M. Zou).

and Watters [16], and then advanced by many researchers, see for example, Glover and Woolsey [7,8], Glover [6], Adams and Sherali [1,2] and Sherali and Smith [15]. For (BBQP), Chaovalitwongse et al. [3] proposed a linearization technique. Recently, it has been improved by He et al. [10].

Chaovalitwongse et al.'s linearization (CL) is equivalent to (BBQP) when Q is a nonnegative matrix. However, we prove in this paper that the linear programming lower bound of (CL) is always zero. Then, we use a counterexample to show that the improved version of (CL), He et al.'s linearization (HL), failed to be equivalent to (BBQP) when Q is not nonnegative. Applying Glover's linearization scheme to (BBQP) yields a new linearization, denoted by (GL). It is always equivalent to (BBQP) without any assumption on Q. For the quadratic assignment problem, the corresponding linearization is also known as Xia–Yuan linearization [17]. Compared with the two recent linearizations (CL) and (HL), our new linearization (GL) not only provides a tighter relaxation at the root node, but also has a much better numerical performance for globally solving (BBQP).

The remainder is organized as follows. Section 2 studies the two existing linearization techniques. In Section 3, we propose a new linearization method. Section 4 presents the numerical comparison.

Notations Let $v(\cdot)$ be the optimal value of (\cdot) . conv(X) is the convex hull of X. $R(\cdot)$ is the linear programming relaxation of (\cdot) . For a matrix $Q=(q_{ij}), \|Q\|_{\infty}=\max_{i\in\{1,\dots,n\}}\sum_{j=1}^n|q_{ij}|, \ Q\geq 0$ means that $q_{ij}\geq 0$ for all i and j. Notation 1:n stands for $1,\dots,n$.

^{*} Corresponding author.

2. Two existing linearization techniques for (BBQP)

We first present and then study the two existing linearization techniques for (BBQP) due to Chaovalitwongse et al. [3] and He et al. [10], respectively.

Chaovalitwongse et al. [3] proposed the following linearization for (BBQP), denoted by (CL):

$$\min \sum_{i=1}^{n} s_i$$

s.t.
$$x \in X$$
, (3)

$$\sum_{i=1}^{n} q_{ij} x_j - y_i - s_i = 0, \quad i = 1:n,$$
(4)

$$y_i \le \mu (1 - x_i), \quad i = 1 : n,$$
 (5)

$$y_i \ge 0, \quad s_i \ge 0, \quad i = 1:n,$$
 (6)

where $\mu = \|Q\|_{\infty}$. Under the assumption $Q \ge 0$, it was proved that v(CL) = v(BBQP) [3]. However, as shown in the following, under the assumption $n \ge 2p$, the linear programming relaxation of (CL) at the root node always gives a trivial lower bound: zero.

Theorem 2.1. Suppose $Q \ge 0$ and $n \ge 2p$. Then, v(R(CL)) = 0.

Proof. Let $\widetilde{x} = \left(\frac{p}{n}, \dots, \frac{p}{n}\right)^T$, $\widetilde{s} = (0, \dots, 0)^T$ and $\widetilde{y}_i = \frac{p}{n} \sum_{j=1}^n q_{ij} \ge 0$ for i = 1 : n. It is sufficient to show that $(\widetilde{x}, \widetilde{y}, \widetilde{s})$ is a feasible solution of R(CL), which is obtained by replacing the constraint (3) with $x \in \text{conv}(X)$. The inequality (4) trivially holds at $(\widetilde{x}, \widetilde{y}, \widetilde{s})$. The inequality (5) holds since

$$\widetilde{y}_i - \mu \left(1 - \widetilde{x}_i\right) = \frac{p}{n} \left(\sum_{j=1}^n q_{ij} - \frac{n-p}{p} \mu \right)$$

$$\leq \frac{p}{n} \left(\sum_{j=1}^n q_{ij} - \mu \right) \leq 0,$$

where the two inequalities follow from the assumption $n \ge 2p$ and the definition of μ , respectively. The proof is complete. \Box

Recently, He et al. [10] improved (CL) to the following linearization, denoted by (HL):

$$\min \sum_{i=1}^{n} (s_i - \sigma x_i)$$

s.t. $x \in X$,

$$\sum_{j=1}^{n} q_{ij} x_{j} - y_{i} - s_{i} + \sigma = 0, \quad i = 1:n,$$

$$y_i \le \mu (1 - x_i), \quad i = 1:n,$$

$$y_i \ge 0, \quad s_i \ge 0, \quad i = 1:n,$$

where μ and σ are constants: $\mu = \|Q\|_{\infty}$ and $\sigma = \mu - \max_{i=1:n} \max_{x \in X} \{\sum_{j=1}^n q_{ij}x_j\}$. It was concluded in corollary 1 in [10] that v(BBQP) = v(HL). However, this is true only when $Q \geq 0$. Below is a counterexample.

Let n = 4, p = 2 and

$$Q = \begin{bmatrix} 0 & -2 & 0 & 0 \\ -2 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \end{bmatrix}.$$

We have v(BBQP) = -4 < v(HL) = 2.

3. Glover's linearization for (BBQP)

Based on Glover's linearization scheme, we propose a "new" linearization for (BBQP). We first reformulate the objective function (1) as:

$$\sum_{i=1}^{n} \sum_{i=1}^{n} q_{ij} x_i x_j = \sum_{i=1}^{n} \left(\left(\sum_{i \neq i} q_{ij} x_j \right) x_i + q_{ii} x_i \right).$$

Then, it is not difficult to verify that the equality

$$\left(\sum_{j\neq i} q_{ij} x_j\right) x_i = \max \left\{ l_i x_i, u_i x_i - u_i + \sum_{j\neq i} q_{ij} x_j \right\}$$

holds for any $x \in X$, where

$$u_i = \max_{\mathbf{x} \in X} \sum_{j \neq i} q_{ij} x_j = \sum_{j=1}^p q_{i\varphi_i(j)},$$

$$l_i = \min_{x \in X, \ x_i = 1} \sum_{j \neq i} q_{ij} x_j = \sum_{j=1}^{p-1} q_{i\phi_i(j)},$$

 φ_i be the permutation of $\{1:n\}$ such that $q_{i\varphi_i(1)} \geq q_{i\varphi_i(2)} \geq \cdots \geq q_{i\varphi_i(n)}$ (q_{ii} is redefined as 0), and ϕ_i be the permutation of $\{1,\ldots,i-1,i+1,\ldots,n\}$ such that $q_{i\phi_i(1)} \leq q_{i\phi_i(2)} \leq \cdots \leq q_{i\phi_i(n)}$. For i=1:n, introducing the new variable z_i to replace $(\sum_{j\neq i}q_{ij}x_j)x_i$ yields the following "new" linearization, denoted by (GL):

$$\min \sum_{i=1}^n (z_i + q_{ii}x_i)$$

st $x \in X$

$$z_i \ge l_i x_i, \quad i = 1, \dots, n, \tag{7}$$

$$z_i \ge u_i x_i - u_i + \sum_{i \ne i} q_{ij} x_j, \quad i = 1:n$$
 (8)

and the following result on the equivalence:

Theorem 3.1. v(GL) = v(BBQP).

Next, we can show that the linear programming relaxation of (GL) in general is at least as tight as that of (HL) at the root node.

Theorem 3.2. When $Q \ge 0$, $v(R(GL)) \ge v(R(HL))$.

Proof. Setting $s_i = z_i + \sigma x_i + q_{ii}x_i$ in (HL) yields the equivalent formulation:

$$\min \sum_{i=1}^n (z_i + q_{ii}x_i)$$

s.t. $x \in X$,

$$z_i > -\sigma x_i - q_{ii} x_i, \quad i = 1:n, \tag{9}$$

$$z_i \le \sum_{i \ne i} q_{ij} x_j + \sigma - \sigma x_i, \quad i = 1:n, \tag{10}$$

$$z_i \ge \sum_{i \ne i} q_{ij} x_j + (\mu - \sigma) (x_i - 1), \quad i = 1 : n.$$
 (11)

Notice that R(GL) and R(HL) are obtained by replacing $x \in X$ with $x \in \text{conv}(X)$ in (GL) and (HL), respectively. Let (x, z) be any feasible solution of R(GL). Then, either the inequality (9) or the inequality (11) is active at (x, z). Since $Q \ge 0$, $\sigma \ge 0$ and $0 \le x_i \le 1$ for i = 1 : n, for the right-hand side of (9), we have

$$-\sigma x_i - q_{ii}x_i \le -\sigma x_i \le \sum_{j \ne i} q_{ij}x_j + \sigma - \sigma x_i,$$

Download English Version:

https://daneshyari.com/en/article/5128396

Download Persian Version:

https://daneshyari.com/article/5128396

<u>Daneshyari.com</u>