On linearization techniques for budget-constrained binary quadratic programming problems

Mei-Jia Yang ${ }^{\text {a }}$, Yong Xia ${ }^{\text {a,* }}$, Hui-Min Zou ${ }^{\text {b }}$
${ }^{\text {a }}$ State Key Laboratory of Software Development Environment, LMIB of the Ministry of Education, School of Mathematics and System Sciences, Beihang University, Beijing, 100191, PR China
${ }^{\mathrm{b}}$ Beijing Polytechnic, Beijing, 100176, PR China

A R T I C L E INFO

Article history:

Received 1 February 2016
Received in revised form
2 September 2016
Accepted 2 September 2016
Available online 10 September 2016

Keywords:
Binary quadratic programming
Budget constraint
Linearization
Linear programming relaxation

Abstract

Glover's linearization technique is revisited for solving the binary quadratic programming problem with a budget constraint (BBQP). When compared with the recent two linearizations for (BBQP), it not only provides a tighter relaxation at the root node, but also has a much better computational performance for globally solving (BBQP).

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

The budget-constrained binary quadratic programming problem (BBQP) is to minimize a general quadratic function with binary variables and an additional budget constraint. It can be formulated as follows:

$$
\begin{equation*}
\min x^{T} Q x=\sum_{i=1}^{n} \sum_{j=1}^{n} q_{i j} x_{i} x_{j} \tag{1}
\end{equation*}
$$

s.t. $x \in X:=\left\{x \mid e^{T} x=p, x \in\{0,1\}^{n}\right\}$,
where $Q=\left(q_{i j}\right)$ is an $n \times n$ symmetric matrix, $e=(1, \ldots, 1)^{T}$ and $p \in\{1, \ldots, n\}$ is a given integer budget. It could be assumed that $p \leq n / 2$, since otherwise we can replace all the variables $x_{i}(i=1, \ldots, n)$ with $y_{i}:=1-x_{i}$.
(BBQP) is NP-hard, as its special applications include the p-dispersion-sum problem [4,9,14] in facility location, the dense k -subgraph problem [5] and the p-clique problem [11,12] in graph theory.

The linearization techniques for solving binary quadratic programming problems were first introduced by Zangwill [18]

[^0]and Watters [16], and then advanced by many researchers, see for example, Glover and Woolsey [7,8], Glover [6], Adams and Sherali [1,2] and Sherali and Smith [15]. For (BBQP), Chaovalitwongse et al. [3] proposed a linearization technique. Recently, it has been improved by He et al. [10].

Chaovalitwongse et al.'s linearization (CL) is equivalent to (BBQP) when Q is a nonnegative matrix. However, we prove in this paper that the linear programming lower bound of (CL) is always zero. Then, we use a counterexample to show that the improved version of (CL), He et al.'s linearization (HL), failed to be equivalent to (BBQP) when Q is not nonnegative. Applying Glover's linearization scheme to (BBQP) yields a new linearization, denoted by (GL). It is always equivalent to (BBQP) without any assumption on Q. For the quadratic assignment problem, the corresponding linearization is also known as Xia-Yuan linearization [17]. Compared with the two recent linearizations (CL) and (HL), our new linearization (GL) not only provides a tighter relaxation at the root node, but also has a much better numerical performance for globally solving (BBQP).

The remainder is organized as follows. Section 2 studies the two existing linearization techniques. In Section 3, we propose a new linearization method. Section 4 presents the numerical comparison.

Notations Let $v(\cdot)$ be the optimal value of $(\cdot) \cdot \operatorname{conv}(X)$ is the convex hull of $X . \mathrm{R}(\cdot)$ is the linear programming relaxation of (\cdot). For a matrix $Q=\left(q_{i j}\right),\|Q\|_{\infty}=\max _{i \in\{1, \ldots, n\}} \sum_{j=1}^{n}\left|q_{i j}\right| . Q \geq 0$ means that $q_{i j} \geq 0$ for all i and j. Notation $1: n$ stands for $1, \ldots, n$.

2. Two existing linearization techniques for (BBQP)

We first present and then study the two existing linearization techniques for (BBQP) due to Chaovalitwongse et al. [3] and He et al. [10], respectively.

Chaovalitwongse et al. [3] proposed the following linearization for (BBQP), denoted by (CL):

$$
\begin{array}{ll}
\min & \sum_{i=1}^{n} s_{i} \\
\text { s.t. } & x \in X, \\
& \sum_{j=1}^{n} q_{i j} x_{j}-y_{i}-s_{i}=0, \quad i=1: n, \\
& y_{i} \leq \mu\left(1-x_{i}\right), \quad i=1: n \\
& y_{i} \geq 0, \quad s_{i} \geq 0, \quad i=1: n \tag{6}
\end{array}
$$

where $\mu=\|Q\|_{\infty}$. Under the assumption $Q \geq 0$, it was proved that $v(\mathrm{CL})=v$ (BBQP) [3]. However, as shown in the following, under the assumption $n \geq 2 p$, the linear programming relaxation of (CL) at the root node always gives a trivial lower bound: zero.

Theorem 2.1. Suppose $Q \geq 0$ and $n \geq 2 p$. Then, $v(\mathrm{R}(\mathrm{CL}))=0$.
Proof. Let $\widetilde{x}=\left(\frac{p}{n}, \ldots, \frac{p}{n}\right)^{T}, \widetilde{s}=(0, \ldots, 0)^{T}$ and $\widetilde{y}_{i}=\frac{p}{n} \sum_{j=1}^{n} q_{i j}$ ≥ 0 for $i=1: n$. It is sufficient to show that $(\widetilde{x}, \widetilde{y}, \widetilde{s})$ is a feasible solution of $\mathrm{R}(\mathrm{CL})$, which is obtained by replacing the constraint (3) with $x \in \operatorname{conv}(X)$. The inequality (4) trivially holds at $(\widetilde{x}, \widetilde{y}, \widetilde{s})$. The inequality (5) holds since

$$
\begin{aligned}
\widetilde{y}_{i}-\mu\left(1-\widetilde{x}_{i}\right) & =\frac{p}{n}\left(\sum_{j=1}^{n} q_{i j}-\frac{n-p}{p} \mu\right) \\
& \leq \frac{p}{n}\left(\sum_{j=1}^{n} q_{i j}-\mu\right) \leq 0
\end{aligned}
$$

where the two inequalities follow from the assumption $n \geq 2 p$ and the definition of μ, respectively. The proof is complete.

Recently, He et al.[10] improved (CL) to the following linearization, denoted by (HL):

$$
\begin{array}{ll}
\min & \sum_{i=1}^{n}\left(s_{i}-\sigma x_{i}\right) \\
\text { s.t. } & x \in X, \\
& \sum_{j=1}^{n} q_{i j} x_{j}-y_{i}-s_{i}+\sigma=0, \quad i=1: n \\
& y_{i} \leq \mu\left(1-x_{i}\right), \quad i=1: n \\
& y_{i} \geq 0, \quad s_{i} \geq 0, \quad i=1: n
\end{array}
$$

where μ and σ are constants: $\mu=\|Q\|_{\infty}$ and $\sigma=\mu-$ $\max _{i=1: n} \max _{x \in X}\left\{\sum_{j=1}^{n} q_{i j} x_{j}\right\}$. It was concluded in corollary 1 in [10] that $v(\mathrm{BBQP})=v(\mathrm{HL})$. However, this is true only when $Q \geq 0$. Below is a counterexample.

Let $n=4, p=2$ and
$Q=\left[\begin{array}{rrrr}0 & -2 & 0 & 0 \\ -2 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0\end{array}\right]$.
We have $v(\mathrm{BBQP})=-4<v(\mathrm{HL})=2$.

3. Glover's linearization for (BBQP)

Based on Glover's linearization scheme, we propose a "new" linearization for (BBQP). We first reformulate the objective function (1) as:
$\sum_{i=1}^{n} \sum_{j=1}^{n} q_{i j} x_{i} x_{j}=\sum_{i=1}^{n}\left(\left(\sum_{j \neq i} q_{i j} x_{j}\right) x_{i}+q_{i i} x_{i}\right)$.
Then, it is not difficult to verify that the equality
$\left(\sum_{j \neq i} q_{i j} x_{j}\right) x_{i}=\max \left\{l_{i} x_{i}, u_{i} x_{i}-u_{i}+\sum_{j \neq i} q_{i j} x_{j}\right\}$
holds for any $x \in X$, where
$u_{i}=\max _{x \in X} \sum_{j \neq i} q_{i j} x_{j}=\sum_{j=1}^{p} q_{i \varphi_{i}(j)}$,
$l_{i}=\min _{x \in X, x_{i}=1} \sum_{j \neq i} q_{i j} x_{j}=\sum_{j=1}^{p-1} q_{i \phi_{i}(j)}$,
φ_{i} be the permutation of $\{1: n\}$ such that $q_{i \varphi_{i}(1)} \geq q_{i \varphi_{i}(2)} \geq$ $\cdots \geq q_{i \varphi_{i}(n)}\left(q_{i i}\right.$ is redefined as 0$)$, and ϕ_{i} be the permutation of $\{1, \ldots, i-1, i+1, \ldots, n\}$ such that $q_{i \phi_{i}(1)} \leq q_{i \phi_{i}(2)} \leq \cdots \leq q_{i \phi_{i}(n)}$.

For $i=1: n$, introducing the new variable z_{i} to replace ($\left.\sum_{j \neq i} q_{i j} x_{j}\right) x_{i}$ yields the following "new" linearization, denoted by (GL):

$$
\begin{array}{ll}
\min & \sum_{i=1}^{n}\left(z_{i}+q_{i i} x_{i}\right) \\
\text { s.t. } & x \in X, \\
& z_{i} \geq l_{i} x_{i}, \quad i=1, \ldots, n, \\
& z_{i} \geq u_{i} x_{i}-u_{i}+\sum_{j \neq i} q_{i j} x_{j}, \quad i=1: n \tag{8}
\end{array}
$$

and the following result on the equivalence:
Theorem 3.1. $v(\mathrm{GL})=v(\mathrm{BBQP})$.
Next, we can show that the linear programming relaxation of (GL) in general is at least as tight as that of (HL) at the root node.

Theorem 3.2. When $Q \geq 0, v(\mathrm{R}(\mathrm{GL})) \geq v(\mathrm{R}(\mathrm{HL}))$.
Proof. Setting $s_{i}=z_{i}+\sigma x_{i}+q_{i i} x_{i}$ in (HL) yields the equivalent formulation:

$$
\begin{array}{ll}
\min & \sum_{i=1}^{n}\left(z_{i}+q_{i i} x_{i}\right) \\
\text { s.t. } & x \in X, \\
& z_{i} \geq-\sigma x_{i}-q_{i i} x_{i}, \quad i=1: n, \\
& z_{i} \leq \sum_{j \neq i} q_{i j} x_{j}+\sigma-\sigma x_{i}, \quad i=1: n, \\
& z_{i} \geq \sum_{j \neq i} q_{i j} x_{j}+(\mu-\sigma)\left(x_{i}-1\right), \quad i=1: n . \tag{11}
\end{array}
$$

Notice that $\mathrm{R}(\mathrm{GL})$ and $\mathrm{R}(\mathrm{HL})$ are obtained by replacing $x \in X$ with $x \in \operatorname{conv}(X)$ in (GL) and (HL), respectively. Let (x, z) be any feasible solution of $R(G L)$. Then, either the inequality (9) or the inequality (11) is active at (x, z). Since $Q \geq 0, \sigma \geq 0$ and $0 \leq x_{i} \leq 1$ for $i=1: n$, for the right-hand side of (9), we have
$-\sigma x_{i}-q_{i i} x_{i} \leq-\sigma x_{i} \leq \sum_{j \neq i} q_{i j} x_{j}+\sigma-\sigma x_{i}$,

https://daneshyari.com/en/article/5128396

Download Persian Version:
https://daneshyari.com/article/5128396

Daneshyari.com

[^0]: * Corresponding author.

 E-mail addresses: 15201644541@163.com (M.-J. Yang), dearyxia@gmail.com (Y. Xia), 13161563408@163.com (H.-M. Zou).

