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a b s t r a c t

In this paper, we propose a finite barrier kernel function for primal–dual interior-point algorithm in linear
optimization with a full-Newton step. To our best knowledge, it is the first time that the property of
exponential convexity is used for full-Newton step interior-point methods(IPMs). Moreover, the analysis
is simplified and the complexity of the algorithm coincides with the currently best iteration bound for
linear optimization problems.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

Since the path-breaking paper of Karmarkar [6], linear opti-
mization(LO) becamean active area of research. Primal–dualmeth-
ods have attracted a lot of interest. Thesemethods involve Newton
direction, which is closely related to the well-known primal–dual
logarithmic barrier function. Peng et al. [10–12] replaced the log-
arithmic barrier by a so-called self-regular barrier function, and
modified the search direction accordingly, then they obtained a
large-update method for which the theoretical iteration bound is
O(

√
n(log n) log(n/ε)). Bai et al. [1] introduced a new barrier ker-

nel function which is not self-regular. Based on the finite ker-
nel function they devised a new large-update method with the
same iteration bound. Later, Wang et al. [14] and Bai et al. [2,3]
extended the new efficient large-update primal–dual IPM for LO
to semidefinite optimization (SDO), P∗(κ)-linear complementarity
problem (P∗(κ)-LCP) and second-order cone optimization(SOCO).
Cai et al. [4] extended the primal–dual IPM for LO in Bai et al. [1] to
convex quadratic optimization (CQO) by simple complexity analy-
sis.

Earlier, Darvay [5] proposed a new technique for finding a
class of search directions. By using an algebraic equivalent trans-
formation of the nonlinear equations which define the central
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path, the author designed a full-Newton step primal–dual path-
following interior-point algorithm for LO with iteration bound
O(

√
n log(n/ε)). Recently, Zhang and Xu [15] presented a feasible

IPM for solving the LO problems with reformulation of the cen-
tral path. Using the same reformulation of the central path, Kheir-
fam [7] proposed a new primal–dual path-following interior-point
algorithm for LCP over symmetric cones. Later on, Mansouri et al.
[9] presented amodified infeasible interior-point algorithm for LO.

In this paper, we introduce a full-Newton step interior-point
algorithm for LO by modifying the Newton direction based on a
finite barrier kernel function. We modify the feasibility step and
use the property of exponential convexity to analyze the algorithm.
We will adopt the basic analysis used in [1], and revise them to
be suited for the small-update case. It is proved, for the feasible
case, that the complexity obtained coincides with the best known
bound, namely, O(

√
nL), where L denotes the input data length

from simple analysis.
The paper is organized as follows. In Sections 2 and 3,we review

and develop some useful properties of the finite kernel function
that are needed in the analysis of the algorithm. Then the analysis
and complexity bound of the algorithm are presented in Section 4.
Finally, conclusions and remarks are given in Section 5.

Let us introduce some notations first. Let e be the vector with
all entries 1, and x = (x1, . . . , xi, . . . , xn) ∈ Rn, where xi is
the ith component. Let xmin = min{xi}, 1 ≤ i ≤ n and X be
the n × n diagonal matrix with xi the diagonal entries. For any
two vectors x and s, xs denotes the componentwise (or Hadamard)
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product of the two vectors.We also use the notation xs−1
:= x/s =

[x1/s1, x2/s2, . . . , xn/sn], for x, s ∈ Rn such that si ≠ 0, i =

1, 2, . . . , n. We use ∥ · ∥ to denote the Euclidean norm ∥ · ∥2 and
∥ · ∥∞ the infinity norm.

2. Preliminaries

In this paper, we deal with primal–dual IPMs for solving the
following LO problem:

(P) min cT x, s.t. Ax = b, x ≥ 0, (1)

where A ∈ Rm×n satisfies rank(A) = m, c ∈ Rn, b ∈ Rm and its
dual problem

(D) max bTy, s.t. ATy + s = c, s ≥ 0. (2)

It is assumed in IPMs theory that both (P) and (D) satisfy the
interior point condition (IPC), i.e., there exists an (x0, y0, s0) such
that

Ax0 = b, x0 > 0, ATy0 + s0 = c, s0 > 0. (3)

Finding optimal solutions of (P) and (D) is equivalent to solving
the following system:

Ax = b, x ≥ 0, ATy + s = c, s ≥ 0, xs = 0. (4)

The basic idea of primal–dual IPMs is to replace the complemen-
tarity condition xs = 0 by the parameterized equation xs = µe.
The replacement will give us the following new system:

Ax = b, x ≥ 0, ATy + s = c, s ≥ 0, xs = µe. (5)

If the IPC holds, then for each µ > 0, system (5) has a unique
solution. This solution, denoted by (x(µ), y(µ), s(µ)), is called the
µ-center of the primal–dual pair (P) and (D). The set of µ-centers
with all µ > 0 gives the central path of (P) and (D). It has been
shown that the limit of the central path (as µ goes to zero) exists
and it is an optimal solution of (P) and (D) (see Roos et al. [13]).

For a given feasible point (x, y, s), applying Newton’smethod to
(5) gives the following linear system of equations

A△x = 0, AT
△y + △s = 0, s△x + x△s = µe − xs, (6)

where (△x,△y,△s) gives the Newton step.
Define the vector

v :=

xs/µ. (7)

Note that the pair (x, s) coincides with theµ-center (x(µ), s(µ)) if
and only if v = e.

We use the notations

Ā := AV−1X/µ = AS−1V (8)

and define the scaled search directions dx and ds by

dx := v∆x/x, dy := ∆y, ds := v∆s/s. (9)

Then system (6) becomes

Ādx = 0, ĀTdy + ds = 0, dx + ds = v−1
− v. (10)

The third equation in the above system is called the scaled
centering equation. Let Ψ (v) =

n
i=1 ψ(υi) and ψ(t) = (t2 −

1)/2 − log t, t > 0, where ψ is called a kernel function. It can be
easily verified

dx + ds = v−1
− v = −∇Ψ (v). (11)

We use the norm-based proximity measure δ(υ) defined by

δ(υ) := ∥∇Ψ (v)∥ =

 n
i=1

(ψ ′(t))2. (12)

Note that since Ψ (v) is strictly convex and minimal at v = e, so
the minimal value is zero, we have

Ψ (v) = 0 ⇔ δ(υ) = 0 ⇔ v = e. (13)

Since dx and ds are orthogonal, we will have dx = 0 and ds = 0 if
and only if v = e, i.e.,

dx = 0 and ds = 0 ⇔ x = x(µ) and s = s(µ).

The generic form of the algorithm is shown as follows:

Algorithm 1 Generic feasible IPM for LO
Input:

A threshold parameters τ > 0;
An accuracy parameter ε > 0;
a fixed barrier update parameter θ, 0 < θ < 1;
feasible pair (x0, y0, s0) with µ0 > 0, v0 =


x0s0/µ0 such that

δ(v0) ≤ τ .
begin:
x := x0, y := y0, s := s0, µ := µ0

;

while nµ ≥ ε do
x := x +∆x;
s := s +∆s;
y := y +∆y;
µ := (1 − θ)µ;

end while
end

3. Properties of the new proximity function

The aimof this paper is to investigate the kernel function,which
has a finite value at the boundary of feasible region, namely

ψ(t) = (t − 1)2/2. (14)

Note that the kernel function can be considered as a special case of
the kernel function of [1]

ψ(t) = (t2 − 1)/2 + eσ(1−t)−1/σ . (15)

But there is a slight difference. In [1], it is required that all the
components of vector v are greater than or equal to some value
so that σ can be large enough, but in our paper, σ → 0. The kernel
function in (14) is first used in Liu and Sun [8].

Obliviously, ψ ′(t) = t − 1, ψ ′′(t) = 1, ψ ′′′(t) = 0. The scaled
centering equation becomes

dx + ds = p, (16)

where p = −∇Ψ (v) = e − v.
The search direction decided by the kernel function coincides

with the equivalent reformulation of the central path in Zhang and
Xu [15], and is only up to a constant comparingwith the equivalent
algebraic transformation ϕ(t) =

√
t proposed by Darvay [5].

Lemma 3.1. One has ψ(t) = ψ ′(t)2/2,Ψ (v) = δ(υ)2/2 and
δ(υ) = ∥p∥.

Lemma 3.2. Let t1 ≥ 1/2 and t2 ≥ 1/2. Then

ψ(
√
t1t2) ≤ (ψ(t1)+ ψ(t2))/2.
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