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a b s t r a c t

The main objective of this work is to obtain an efficient three-dimensional boundary element (BE)

formulation for the simulation of layered solids. This formulation is obtained by combining an

alternative multi-region technique with an infinite boundary element (IBE) formulation. It is demon-

strated that such a combination is straightforward and can be easily programmed. Kelvin fundamental

solutions are employed, considering the static analysis of isotropic and linear-elastic domains.

Establishing relations between the displacement fundamental solutions of the different domains, the

alternative technique used in this paper allows analyzing all domains as a single solid, not requiring

equilibrium or compatibility equations. It was shown in a previous paper that this approach leads to a

smaller system of equations when compared to the usual multi-region technique and the results

obtained are more accurate. The two-dimensionally mapped infinite boundary element (IBE) formula-

tion here used is based on a triangular BE with linear shape functions. One advantage of this

formulation over quadratic or higher order elements is that no additional degrees of freedom are

added to the original BE mesh by the presence of the IBEs. Thus, the IBEs allow the mesh to be reduced

without compromising the accuracy of the result. The use of IBEs improves the advantages of the

alternative multi-region technique, contributing for the low computational cost and allowing a

considerable mesh reduction. Furthermore, the results show good agreement with the ones given in

other works, confirming the accuracy of the presented formulation.

& 2013 Elsevier Ltd. All rights reserved.

1. Introduction

Considering specifically infinite multi-domain models, many
options are available in the literature and each one of them
implies advantages and disadvantages. However, depending on
the problem to be solved, one technique may become more
attractive than the others.

In most cases, a numerical approach may be employed.
The finite element method (FEM) is popular [1], however, it has
some disadvantages when compared to other options such as the
boundary element method (BEM) [2]. The FEM requires the
discretization of the infinite domain, implying on a high number
of elements and leading to a large and sometimes impracticable
processing time. To reduce these inconveniences, some authors
use infinite elements together with finite elements, such as [3].

It becomes more viable to solve these problems with the BEM,
once only the boundary of the domains requires discretization.

This allows reducing the problem dimension, implying on less
processing time. This advantage is explored in several works [4]
and more developments are making the BEM even more attractive
to future applications [5]. The classical way to consider domains in
contact with the BEM, which is described in detail in Ref. [6], is
based on imposing equilibrium and compatibility conditions for all
interface points between every pair of domains in contact. As
pointed out in Ref. [7], these impositions may cause inaccuracies
and numerous blocks of zeros are generated at the final system of
equations. To avoid these disadvantages, Ref. [7] presents an
alternative multi-region BEM technique for three-dimensional
elastic problems, which does not require equilibrium nor compat-
ibility conditions along the interfaces. This technique is also
employed for two-dimensional elastic and potential problems in
[8] and for bending plate analysis in [9] and [10]. Considering a
constant Poisson ratio, it is possible to establish relations between
the displacement fundamental solutions and to analyze all sub-
domains as a single solid. Thus, a better continuity between
domains in contact is guaranteed and therefore the result accu-
racy is improved. In addition to that, no blocks of zeros are
present at the final system of equations, which is reduced. Thus,
better results are obtained in less processing time. By testing this
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formulation in heterogeneous domain problems with different
Poisson ratios, the authors concluded that the error introduced by
an average Poisson ratio consideration may be considered of little
relevance for displacement calculation. In the end, it is viable to
employ this formulation in more general engineering problems.

Another way to improve the BEM performance is by using
infinite boundary elements (IBEs). The first reference to an IBE
was [11], in which the shape functions of an origin BE are
multiplied by special decay functions. Another type of IBE may
be obtained by using mapped functions to relate the local system
of coordinates to the global one, as originally shown in Ref. [12].
In those studies that make use of two-dimensional IBEs, such as
performed in Ref. [13], it may be noted that they are generally
based on quadrilateral BEs. An alternative to this type of IBE is
given in Ref. [14], which presented a mapped IBE based on a
triangular BE with linear shape functions. One advantage of this
approach over quadratic or higher order elements is that no
additional degrees of freedom are added to the original BE mesh
by the presence of the IBEs.

The aim of this work is to combine the BE multi-region
technique presented in Ref. [7] to the IBE formulation presented
in Ref. [14], obtaining a new and more efficient multi-region BE
formulation for layered domain simulation. The addition of IBE-
type elements do not interfere with the alternative multi-region
technique, so the combined formulation can be easily obtained
and programmed. The domain is modeled with variable elasticity
modulus and a constant Poisson ratio, as described by [15].
The results obtained are consistent with those of other authors,
confirming the accuracy of the presented approach. In addition to
that, the use of IBEs contributed for the low computational cost,
allowing a considerable mesh reduction.

It is important to notice that the numerical versatility of the
BEM is fully maintained, allowing an efficient simulation of a
wide variety of problems. Furthermore, the main reason for
combining the BE multi-region technique to the IBE formulation
is that their advantages are united with no drawbacks. To their
best knowledge, the authors are not aware of other numerical
tools in the literature capable of simulating three-dimensional
layered infinite domains with less degrees of freedom. Therefore,
it may be considered a powerful alternative for other authors and
a relevant contribution of this paper. In future works, we intend
to apply this formulation in soil–structure interaction problems.

2. Boundary element formulation

The equilibrium of a solid body can be represented by a
boundary integral equation called the Somigliana identity, which
for homogeneous, isotropic and linear-elastic domains is

cijðyÞujðyÞþ

Z
G

pn

ijðx,yÞujðxÞ dGðxÞ ¼
Z
G

un

ijðx,yÞpjðxÞ dGðxÞ ð1Þ

Eq. (1) is written for a source point y at the boundary, where
the displacement is ujðyÞ. The constant cij depends on the Poisson
ratio and the boundary geometry at y, as pointed out in Ref. [13].
The field point x goes through the whole boundary G, where
displacements are ujðxÞ and tractions are pjðxÞ. The integral kernels
un

ijðx,yÞ and pn

ijðx,yÞ are Kelvin three-dimensional fundamental
solutions for displacements and tractions, respectively. Kernel
un

ijðx,yÞ has order 1=r and kernel pn

ijðx,yÞ order 1=r2, where
r¼ 9x�y9, so the integrals have singularity problems when x

approaches y. Therefore the stronger singular integral, over the
traction kernel, has to be defined in terms of a Cauchy principal
value (CPV).

To solve Eq. (1) numerically, the boundary is divided into
regions within which displacements and tractions are

approximated by known shape functions. Here these regions are
of two types, finite boundary elements (BEs) and infinite bound-
ary elements (IBEs). The BEs employed are triangular, as shown in
Fig. 1 with the local system of coordinates, x1x2, and the local
node numbering. The following approximations are used for this
BE:

uj ¼
X3

k ¼ 1

Nkuk
j , pj ¼

X3

k ¼ 1

Nkpk
j ð2Þ

Eq. (2) relates the boundary values uj and pj to the nodal values
of the BE. The BEs have three nodes and for each node there are
three components of displacement uj

k and traction pj
k. The shape

functions Nk used for these approximations are

N1
¼ x1, N2

¼ x2, N3
¼ 1�x1�x2 ð3Þ

The same shape functions are used to approximate the boundary
geometry

xj ¼
X3

k ¼ 1

Nkxk
j ð4Þ

where xk
j are the node coordinates. The same functions are also used

to interpolate displacements and tractions for the IBEs

uj ¼
XNp

k ¼ 1

Nkuk
j , pj ¼

XNp

k ¼ 1

Nkpk
j ð5Þ

Each IBE has Np nodes and not the three that the BEs have. The IBE
geometry, on the other hand, is approximated by special mapping
functions, as discussed in more detail in Section 3.

By substituting Eqs. (2) and (5) in Eq. (1), expression (6) is
obtained

cijðyÞujðyÞþ
XNBE

e ¼ 1

X3

k ¼ 1

½Dpek
ij uk

j �

( )
þ
XNIBE

e ¼ 1

XNp

k ¼ 1

½D1pek
ij uk

j �

( )

¼
XNBE

e ¼ 1

X3

k ¼ 1

½Duek
ij pk

j �

( )
þ
XNIBE

e ¼ 1

XNp

k ¼ 1

½D1uek
ij pk

j �

( )
ð6Þ

NBE is the number of BEs and NIBE is the number of IBEs. For BEs

Dpek
ij ¼

Z
ge

9J9Nkpn

ijðx,yÞ dge, Duek
ij ¼

Z
ge

9J9Nkun

ijðx,yÞ dge ð7Þ

In Eq. (7), ge represents the domain of element e in the local
coordinate system and the global system of coordinates is
transformed to the local one by the Jacobian 9J9¼ 2A, where A is
the element area in the global system. On the other hand, for IBEs

D1pek
ij ¼

Z
ge

91J9Nkpn

ijðx,yÞ dge, D1uek
ij ¼

Z
ge

91J9Nkun

ijðx,yÞ dge ð8Þ

Eq. (8) is analogous to Eq. (7), and the calculation of Jacobian
91J9 is discussed in Section 3. Integrals of Eqs. (7) and (8) are
calculated by standard BEM techniques. Non-singular integrals
are evaluated numerically by using integration points. The sin-
gular ones, on the other hand, are evaluated by the technique

Fig. 1. Triangular boundary element.
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