
Operations Research Letters 44 (2016) 784–789

Contents lists available at ScienceDirect

Operations Research Letters

journal homepage: www.elsevier.com/locate/orl

Minimizing the maximum flow time in batch scheduling
Sungjin Im a,∗, Hoon Oh b, Maryam Shadloo a

a University of California at Merced, Merced, CA, United States
b Rutgers University-Camden, Camden, NJ, United States

a r t i c l e i n f o

Article history:
Received 27 May 2016
Received in revised form
29 September 2016
Accepted 29 September 2016
Available online 6 October 2016

Keywords:
Batch scheduling
Broadcast scheduling
Maximum flow time
Approximation
Resource augmentation

a b s t r a c t

We consider the maximum flow time minimization problem in batch scheduling, which is a capacitated
version of broadcast scheduling. In this setting, n different pages of information are available at the server
which receives requests from clients over time for specific pages. The server can transmit atmost one page
p at each time to satisfy a batch of requests for the same page p, up to a certain capacity Bp. In this paper
we give the first (1 + ϵ)-approximations for this problem with arbitrarily small resource augmentation,
using either more capacity or more speed.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

In batch scheduling, there is a server that stores n different
unit-sized pages of information. Each client submits to the server
a request ρ at time rρ asking for a specific page pρ . The server
can transmit at most one page p at each time to satisfy up
to Bp outstanding requests of the same page p simultaneously;
the capacity Bp can be different for each page. Processing a
batch of requests together is a popular method to increase the
server’s throughput. Not surprisingly, batch scheduling appears in
various forms in numerous applications, not only in server–client
scheduling, but also in manufacturing lines; for pointers of the
applications, see [7].

Broadcast scheduling is a special case of batch scheduling
which has received considerable attention in theoretical computer
science. The only difference is that in broadcast scheduling there
is no limit on the number of requests the server can aggregate at
a time, i.e. Bp = ∞ for all p. In other words, batch scheduling is a
capacitated version of broadcast scheduling. However, as discussed
in [2], capacities are often present in practice. For example, there
could be a limit on the number of clients a server can serve at a
time.

What makes batch/broadcast scheduling algorithmically chal-
lenging is that the scheduler could aggregate more requests by

∗ Corresponding author.
E-mail addresses: sim3@ucmerced.edu (S. Im), ho62@rutgers.edu (H. Oh),

mshadloo@ucmerced.edu (M. Shadloo).

waiting for other requests arriving in the future for the same page.
While the server can increase throughput by doing so, it makes
earlier arriving requests wait longer, thereby making the clients
submitting those requests unhappy. Such a tradeoff becomesmore
challenging in batch scheduling since the scheduler also has to fac-
tor in batch sizes. A request ρ’s flow time is defined as its comple-
tion time Cρ minus its arrival time rρ and measures how long the
request waits since its arrival until its completion time. When re-
quests compete to get served earlier, a popular way of combining
the flow time of individual requests is to consider flow time objec-
tives such as total flow time or the maximum flow time.

In this paper, we study the objective of minimizing the
maximum flow time, i.e. maxρ(Cρ − rρ) in the batch scheduling
setting. In broadcast scheduling, First-In-First-Out (FIFO) is known
to be a 2-approximation [3,5]. At each time, the algorithm FIFO
transmits the page of an outstanding request with the earliest
arrival time; notice that FIFO is in fact an online algorithm since
it does not need to know requests arriving in the future. It was
subsequently shown that no online algorithms can be better
than 2-competitive [3,4]. The open question whether there exists
a better than 2-approximation was recently answered in [7],
which gave a PTAS using a variant of α-point rounding and
dynamic programming (DP). The work in [7] essentially closed
the complexity of the problem in broadcast scheduling since the
problem was already known to be strongly NP-hard [3].

The main goal of this paper is to understand the complexity
of the maximum flow time objective in batch scheduling, which
captures capacity constraints commonly appearing in practice.
A recent work shows that FIFO is still 2-competitive in batch

http://dx.doi.org/10.1016/j.orl.2016.09.016
0167-6377/© 2016 Elsevier B.V. All rights reserved.

http://dx.doi.org/10.1016/j.orl.2016.09.016
http://www.elsevier.com/locate/orl
http://www.elsevier.com/locate/orl
http://crossmark.crossref.org/dialog/?doi=10.1016/j.orl.2016.09.016&domain=pdf
mailto:sim3@ucmerced.edu
mailto:ho62@rutgers.edu
mailto:mshadloo@ucmerced.edu
http://dx.doi.org/10.1016/j.orl.2016.09.016


S. Im et al. / Operations Research Letters 44 (2016) 784–789 785

scheduling [6] as it is in broadcast scheduling. Our work started
from the question if there exists a better than 2-approximation in
batch scheduling.

1.1. Our result

Our main result is the first (1 + ϵ)-approximations with
arbitrarily small resource augmentation. We consider two types
of resources augmented, capacity and speed. In the capacity
augmentation model, the algorithm is allowed to satisfy up to
(1 + δ)Bp requests of page p by one transmission of page p
and is compared against the optimal scheduler subject to the
original capacity Bp for every p. In this model, if the algorithm’s
objective is at most c times the optimum for all inputs, we say that
the algorithm is a (1 + δ)-capacity c-approximation. We believe
that capacity augmentation model is reasonable since capacities
are specified only approximately in practice when capacities are
large—if all capacities are constants, we obtain a PTAS without any
resource augmentation; see Section 2.2.

In the speed augmentation model, both the algorithm and the
optimal scheduler are subject to the same capacities, but the
algorithm is given an extra speed. If it is given 1 + δ speed, it
is allowed to make one additional transmission than the optimal
scheduler in every ⌊1/δ⌋ time steps. In this model, we say the
algorithm is a (1 + δ)-speed c-approximation if the algorithm’s
objective is at most c times the optimum for all inputs. Speed
augmentation is widely considered in the scheduling literature [8].

Theorem 1. Let m denote the number of requests. For minimizing the
maximum flow time in batch scheduling, for any ϵ > 0 and δ > 0,
we have the following approximations:

1. [Section 2.3] a (1 + δ)-capacity (1 + ϵ)-approximation with

running time mO


1
ϵ4δ2


; and

2. [Section 2.4] a (1+ δ)-speed (1+ ϵ)-approximation with running

time mO


1
ϵ3δ
·log(1/(ϵδ))


.

We also show how to obtain a quasi-polynomial time approxi-
mation scheme (QPTAS) without using any extra resources in Sec-
tion 2.1. Currently, we do not know how to obtain a true PTAS,
which we leave as an open problem.

1.2. Overview of our approach

At a high level, we closely follow the PTAS framework used
in [7] for broadcast scheduling, which combines DP and a variant of
α-point rounding. We discuss how we modify each part to obtain
our result in batch scheduling. We first discuss the rounding part.
The rounding part is used when the optimum, opt is large, say
opt ≥ Ω(logm) where m is the number of requests. A standard
linear programming (LP) used in broadcast scheduling is the
following: variable xp,t denotes howmuch page p is transmitted at
time t , andwe need constraints that (i) page pmust be transmitted
within opt time steps after every time the page is requested, and
(ii) at most one page can be transmitted at each time. In batch
scheduling, we need to add more constraints to factor in capacity
constraints. For every page p and every interval I = [t1, t2], we
ensure that (i′) at least ⌈mp,I/Bp⌉ transmissions are made for page
p during [t1, t2 + opt], where mp,I is the number of requests made
during I for page p. This new constraint, together with (ii), turns
out to be necessary and sufficient conditions for a feasible integral
solution to correspond to a schedule with the maximum flow time
at most opt.

We use the same variant of the α-point rounding used in [7].
We give a quick overview of the rounding scheme explaining how
it works well with the new LP constraint. After solving the LP,

we obtain a fractional solution {xp,t} and would like to round
it. A standard α-point rounding picks a random value αp from
[0, 1] uniformly and independently for each page p, then attempts
to transmit page p at the first time t when the accumulative
transmission of page p, i.e.


t ′≤t xt ′p becomes greater than αp

plus each non-negative integer. Note that a new transmission of
page p is made before the LP solution accumulates another unit
of transmissions of page p. Hence due to the constraint (i), we
obtain a temporary schedule with themaximum flow time at most
opt. However, the temporary schedule may be infeasible since it
may make too many transmissions during a short interval, which
translates into a large increase of the objectivewhen it is converted
into a feasible schedule. Roughly speaking, a large number of
pages/random variables result in a large variance in congestion.
To overcome this issue, [7] partitioned pages into O(opt) groups
and used only one random variable of the maximum value at most
1 for each group, therefore was able to have a small congestion
over all intervals w.h.p. The new rounding kept the key property
that a new transmission of page p is made before the LP solution
accumulates another unit of transmissions of page p. Thus, the
new constraint (i′) we use for batch scheduling ensures that the
rounding scheme makes enough transmissions in the temporary
schedule while using a small number of random variables. The
rounding can be de-randomized using the method of pessimistic
estimators [9].

We now discuss the DP part which is used when opt =
O(logm). It is easy to see that in an optimal solution, the number
of distinct pages of requests alive at a time is at most opt. Using
this observation, if Bp = O(1) for all p, one can obtain an optimal
schedule via a DP that keeps track of the number of outstanding
requests for each page. In the capacity augmentation model, by
adding some dummy requests and using an appropriate scaling,
we reduce the general problem to the case where all capacities are
constants. In the speed augmentation model, we use a different
idea. We make an extra transmission of page p before we have
too many possibilities for the number of alive requests of the page
p—the transmission is used to simplify the number. Here we
carefully decide which pages to transmit using extra speed since
we are allowed to make only one extra transmission in every 1/δ
time steps.

1.3. Related work

In batch scheduling, [6] studied online algorithms for flow
time objectives. Specifically, [6] showed O(1)-speed O(1)-capacity
O(1)-competitive algorithms for the total flow time objective and
the more general ℓk-norms of flow time. As mentioned before, [6]
also showed that FIFO is 2-competitive for themaximum flow time
objective. For the best offline results on flow time objectives in
broadcast scheduling, see [1,7].

1.4. Notation and organization

Let T := maxρ rρ + m be the last time we need to consider
in our schedule. In other words, any ‘reasonable’ algorithm can
complete all requests by time T . As observed in [7], one can assume
w.l.o.g. that T = O(m2). This is because if there is an idle time
period of length more than m, one can break the instance into
two disjoint instances since the earlier arriving requests can be
satisfied by any reasonable algorithm before the other requests
arrive. We will show algorithms with running time polynomial (or
quasi-polynomial) inm and T , whichwill imply the desired results.

For notational convenience, we will use a model that is slightly
different from but equivalent to the previously studied models.
At each time, first a set of requests arrive, and then a page is
transmitted to satisfy requests that have arrived but have not been



Download English Version:

https://daneshyari.com/en/article/5128413

Download Persian Version:

https://daneshyari.com/article/5128413

Daneshyari.com

https://daneshyari.com/en/article/5128413
https://daneshyari.com/article/5128413
https://daneshyari.com

