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This works aims at understanding further convergence properties of first order local search methods
with complex geometries. We focus on the composite optimization model which unifies within a simple
formalism many problems of this type. We provide a general convergence analysis of the composite
Gauss-Newton method as introduced in Burke and Ferris (1995) (studied further in Chong and Wang,
2002; Chong and Ng, 2007; Lewis and Wright, 2015) under tameness assumptions (an extension of semi-
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1. Introduction

In composite optimization, convergence of Gauss—-Newton
methods is a question that has attracted a lot of research efforts
in the past decades. Let us mention a few milestones: critical-
ity of accumulation points was proved in [ 10], convergence under
sharpness assumption around accumulation points is givenin[11],
and extensions to weaker regularity conditions are described in
[13,12]. Asymptotic behavior under prox-regularity and identi-
fication under partial smoothness is investigated in [18]. These
results attest to the difficulty of this undertaking. Although
the composite model is strongly structured and Gauss-Newton
method is explicitly designed to take advantage of it, convergence
of iterates always relies on strong local growth conditions around
accumulation points. These are often difficult to check in advance
for general problems due to the complexity of the optimization
model. To our knowledge, a simple and flexible global convergence
analysis is still lacking for these methods.

Departing from existing approaches to address such complex
geometries, we rely on tameness assumptions. In the nonsmooth
nonconvex world, this assumption allows to use a powerful ge-
ometric property, the so-called nonsmooth Kurdyka-tojasiewicz
(KL) inequality, which holds true for many classes of functions
[19,17,6,7]. We require problem data to be definable, a general-
ization of the property of being semi-algebraic [25,14]. This rules
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out non favorable pathological situations such as wild oscillations
(e.g. fractals). This framework is general enough to model the vast
majority of functions that can be handled numerically with a clas-
sical computer, while providing a sufficient condition for KL in-
equality to hold [7]. For a smoother understanding, the reader non
familiar with tame geometry may replace “definable” by “semi-
algebraic”. Recall that an object is said to be real semi-algebraic
if it can be defined as “the solution set of one of several systems of
polynomial equalities and inequalities”.

The use of KL inequality in nonconvex optimization provided
significant advances in understanding convergence of first order
methods [1-4,6,9]. However, the application of these techniques
in complex geometric settings, such as composite optimization,
remains an important challenge. A recent breakthrough has been
made in [8], which describes a general convergence analysis
of Sequential Quadratic Programming methods [15,5,16]. This
is an important example of complex geometric structures with
challenging convergence analysis. To overcome the difficulty of
dealing with problems with complex geometries in this context, [8]
has introduced a new methodology based on the so-called value
function.

We propose a general convergence guaranty for a variant of
the composite Gauss-Newton method [10,11]. The main idea
consists in viewing Gauss-Newton method along the lines of [8]
through the value function approach. An important improvement
brought to [8] is the integration of a general backtracking search
in the analysis. This allows to deal with smooth functions whose
gradients are merely locally Lipschitz continuous. This flexibility is
extremely important from a practical point of view and requires
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Composite Gauss-Newton
Choose xg € D, tg > 0,7 > 1 and iterate
Step 1. Set u; = o and compute the candidate iterate:
- . Mk
Fipr < argmin g(F(x) + VF) (7 = x0) + =y = xell”
yeD
. ~ ~ Mk |~
Step2. While g (F(%is1)) > 8(F(x) + VF(X0) Rirr = x0) + = Resr — xill” )
Mk < TUk p (1)
- . k
Xer1 < argmin g(F(x,) + VF(x) (Y — xi)) + 5 Iy — xil?
yeD
Step 3. Update
Xkr1 < Xpg

non trivial extensions (see [21] for works in this direction). To
the best of our knowledge this result is new, it relies on easily
verifiable assumptions and it is flexible enough to encompass
many problems encountered in practice. In addition, we emphasize
that it provides a simple and intuitive way to highlight the
potential of the value function approach designed in [8].

In Section 2, we describe the problem of interest, the
main assumptions and the algorithm. We also state our main
convergence result. We introduce notations, important definitions
and results from nonsmooth analysis and geometry in Section 3.
The value function and its most important properties are described
in Section 4. Section 5 contains the proof of the main result.

2. Problem setting and main result

We consider the composite optimization problem.
min g(F(x)). (2)
xeDCR"
Our main standing assumption is the following.

Assumption 1. F: R" — R™is €¢? and g: R™ — R is convex and
finite valued. D C R" is convex and closed. F, g and D are definable
in the same o-minimal structure on the field of real numbers (fixed
throughout the text).

Note that Assumption 1 ensures that g is locally Lipschitz
continuous [22, Theorem 10.4]. For any i = 1,2,..., m, we use
the notation f; for the @2 function that corresponds to coordinate i
of F. We denote by VF (x) the Jacobian matrix of F at x:

a A
VF(x) = i(x) e R™™",

BXJ'
We will analyze the numerical scheme (1) which is a back-
tracking variant of the composite Gauss-Newton descent method
[10,11,13,12,18].

Remark 1. The dynamical feature of the step-size parameter 1y is
akin to a backtracking procedure. Indeed, Assumption 1 ensures
that F is locally smooth and g is locally Lipschitz continuous.
However the smoothness and Lipschitz continuity moduli may
be unknown and not be valid in a global sense. They have to be
estimated in an online fashion to prevent unwanted divergent
behaviors.

The next lemma shows that the algorithm is well defined and
the sequence of objective values is nonincreasing (the proof is
given in Section 4). The next theorem is our main result and the
proof is given in Section 5.

Lemma 2.1. For each k, the while loop stops after a finite number of
iterations and we have

Mk
g (F(xk+1)) < g(F(x) + VF (i) (i1 — X)) + 7||Xk+l — x¢1?,
and {g (F (X)) }xen iS a nonincreasing sequence.

Theorem 2.2. Under Assumption 1, we have the alternatives when
k — 4o00.

o ||x¢]| — +oo.
e X converges to acritical point of Problem (2), the sequence ||Xy+1—
Xk || is summable, { ity }ren is bounded.

Remark 2. In the alternatives of Theorem 2.2, the unbounded case
is due to a lack of coercivity rather than a bad adjustment of the
local model through u. Indeed, if we suppose that xg is chosen
such that the set D N {x € R"; g(F(x)) < g(F(x))} is compact,
Lemma 2.1 ensures that the divergent option cannot hold and the
sequence converges. This phenomenon was guessed in [3] and also
appeared in [8]. Accounting for the dynamical feature of wy in our
analysis is a contribution of this work.

3. Notations and preliminary results

3.1. Notations

The symbol 9 refers to the limiting subdifferential. The notion
of a critical point is that of a limiting critical point: zero is in
the limiting subdifferential, a necessary condition of optimality
(nonsmooth Fermat’s rule). We refer, for instance, the reader to
[23, Chapter 8] for further details on the subject.

An o-minimal structure on the field of real numbers is a
structured collection of definable subsets of finite dimensional
Euclidean spaces. It is required to satisfy some of the properties
of semi-algebraic sets. Semi-algebraic sets form an o-minimal
structure but there are many extensions. An introduction to the
subject can be found in [14] and a survey of relevant results is
available in [24]. In Assumption 1, we have fixed an o-minimal
structure. Definable sets are subsets of Euclidean spaces which
belong to it and a definable function is a function which graph is
definable.

The normal cone to D at x € D is denoted by Np(x) and the
indicator function of D is denoted by ip (whose value is constantly
0on D, +o0o otherwise). || - || denotes the Euclidean norm (which is
semi-algebraic). Being given a function f: R’ — R, real numbers
aandb,weset[a <f <b]={xeR": a < f(x) <b}.
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