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a b s t r a c t

We establish heavy-traffic limits for the arrival and workload processes in a single-server queue with a
time-varying arrival-rate function. We establish limits at and before a critical point, the onset of critical
loading, where the arrival-rate function approaches its critical value from below. We extend results by
Newell (1968) and Mandelbaum and Massey (1995) and present alternative views of the interesting
scaling constants that arise in these limits.
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1. Introduction

The purpose of this paper is to extend, and contribute to
a better understanding of, diffusion approximations and heavy-
traffic limits for a single-server queue with time-varying arrival-
rate function that were established by Newell [15–18] and
MandelbaumandMassey [11]; also see [12,8,13,4]. As in our recent
paper [22] for queues with periodic arrival-rate functions, we
develop these limits in the standard framework for heavy-traffic
limits, as in [6,7,19,21].

In this paperwe focus on one special case: the limiting behavior
at and before an isolated critical point, at what is called the
onset of critical loading in [11], where the arrival rate approaches
the critical value from below. Thus, this paper relates to only
Theorem 3.4 in [11]. For that result, we generalize the setting from
Mt/M/1 to Gt/G/1 and give alternative developments, leading to
alternative scaling and alternative interpretations of it.

In particular, we consider a single-server queue with unlimited
waiting room having service times with mean 1, which fixes the
time scale. We consider a sequence of models with an associated
sequence of arrival processes having time-varying arrival-rate
functions. We will establish heavy-traffic limits, which involve
scaling time, so that we are looking at intervals over which many
customers arrive and are served. We assume that there is an
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isolated critical point, which we take to be time 0. In particular,
we assume that the arrival-rate function satisfies

λ(0) = 1 and λ(t) < 1 for t < 0. (1)

Moreover, for simplicity, we assume that λ is nondecreasing in t
before time 0. (There is no mass of workload from the distant past
contributing to the buildup of congestion at the critical point.) As
observed in [15], the congestion at times t < 0 is less, often much
less, than the steady-state distribution with the instantaneous
traffic intensity ρ(t) = λ(t), because the traffic intensity was
previously at lower values.

The approaches in [15–18,11] are quite different from [6,7,
19,21], even though they can be related. First, Newell [15–18]
makes a direct diffusion process approximation and then ana-
lyzes the Fokker–Planck partial differential equation for the time-
varying cumulative distribution function. The papers [15–17] are
landmark contributions to queueing theory, but they are challeng-
ing to understand, because they both develop the diffusion ap-
proximation and analyze it. It turns out that the diffusion process
is the limiting diffusion in the heavy-traffic limits, with the key
asymptotic properties captured by the parameters of that diffusion
process. In contrast, as in [6,7,19,21], our approach emphasizes
scaling, so it avoids looking directly at the detailed evolution of the
diffusion process, but that remains to be done to calculate explicit
approximations. In [23] we develop a robust queueing approach to
calculate such explicit approximations.

The more modern [11] exploits strong approximations. For
scaling, it starts with an initial arrival-rate function and expands
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time about each fixed point in that arrival function. As a
consequence of that expansion, the relevant long-time behavior
of the arrival-rate function is determined by the local behavior of
the initial function, as exposed by a Taylor-series expansion, which
requires extra regularity assumptions. This approach is helpful for
analyzing highly structural mathematical models, as we illustrate
with a sinusoidal example in Example 4.1.

Here is how this paper is organized. In Section 2 we formulate
our arrival process model. In Section 3 we establish a heavy-traffic
functional central limit theorem (FCLT) for the arrival process. In
Section 4 we show how that arrival process FCLT can be recast in a
setting in which we expand time within a fixed initial arrival-rate
function, as in [11].

Motivated by the desire to develop an approach that is helpful
for applications, in Section 5 we show how the heavy-traffic FCLT
can be expressed in yet a different way using drift scaling, which
is in the spirit of §4.3 of [20]. We think that it is natural to first
fit the drift function and then afterwards choose the appropriate
time and space scaling that goes with that drift function. That
approach directly yields the appropriate space scaling and the
diffusion process approximation, which the FCLT’s imply should
perform well when the drift constant is suitably small. Given a
FCLT for the arrival process, corresponding heavy-traffic FCLT’s
follow for the standard queueing processes using the continuous
mapping approach in [21]. In Section 6we illustrate by establishing
the heavy-traffic FCLT for the workload process. Finally, we briefly
draw conclusions in Section 7.

2. The arrival process model

As in [22], we construct the arrival process A by composing a
process assumed to satisfy a FCLT and a deterministic cumulative
arrival-rate function. In particular, we let the stochastic arrival
counting processes defined by

A(t) ≡ N(Λ(t)), t ≥ 0, (2)

where N is a stochastic counting process satisfying a FCLT, i.e.,

N̂n(t) ≡ n−1/2
[N(nt) − nt] ⇒ caBa(t) in D as n → ∞, (3)

where⇒denotes convergence in distribution in the function space
D of right-continuous real-valued functions on the interval [0, ∞)
with left limits, as in [21], and Ba is a standard (drift 0, variance
1) Brownian motion (BM), while Λ is a cumulative arrival-rate
function, satisfying Λ(t) ≡

 t
0 λ(s) ds, t ≥ 0, with λ being the

arrival-rate function, which is assumed to be integrable over finite
intervals.

The construction in (2) is convenient for constructing non-
Markov nonstationary arrival processes. It was suggested in [14]
and also used in [3,5,22,23]. However, it is important to recognize
that, even though it allows very general stochastic processes
N , including renewal processes and much more (see §4.4
of [21]), this model is highly structured, having all unpredictable
stochastic variability associated with the process N , with its FCLT
behavior captured by the single variability parameter ca, while
all the predictable deterministic variability associated with the
deterministic arrival-rate function λ and its associated cumulative
rate function Λ. More generally, we might contemplate a time-
varying variability parameter. In the present context, if the process
N is a renewal counting process, then ca is the square root of
c2a , the squared coefficient of variation (scv, variance divided
by the square of the mean) of an interarrival time. From an
engineering perspective, the tractability produced by reducing the
impact of the stochastic variability to the single parameter c2a
may be essential for drawing useful conclusions about system
performance.

Throughout this paper, we assume that the cumulative arrival-
rate function Λ is deterministic, but it is significant that the
results here can be extended to cover the case in which arrival-
rate function is a stochastic process, which can be important
in applications. For example, service system arrival process data
often indicate overdispersion caused by day-to-day variation, as
discussed in [9].

3. A conventional heavy-traffic FCLT for the arrival process

Given the composition representation of the arrival process in
(2) and the assumed FCLT in (3), we can obtain a conventional FCLT
for the arrival process A defined in (2), which involves scaling time
by n and space by 1/

√
n, and then letting n → ∞, if we write

Ân(t) ≡ n−1/2
[An(nt) − nt] and

Λ̂n(t) ≡ n−1/2
[Λn(nt) − nt], t ≥ 0, (4)

where

An(t) ≡ N(Λn(t)) and Λn(t) ≡

 t

0
λn(s) ds, t ≥ 0, (5)

and we make appropriate assumptions about the deterministic
arrival-rate functions λn(t), which requires that λn(t) remain close
to 1 for large time intervals about t = 0. As in [22], it is important
that we scale time and space in the deterministic cumulative
arrival rate functions Λn in (4).

We find it convenient to work in reverse time, because
the workload process then can be represented as a simple
supremum of the net input process; see Section 6. The reverse-
time construction is discussed in [23], which develops a time-
varying robust queueing approximation based on the supremum
representation. Hence, we measure time backwards from time 0,
so that A(t) counts the number of arrivals in [−t, 0]. This section
is devoted to establishing a FCLT for the process A. We remark
that a FCLT also holds in forward time or in intervals [t1, t2] with
t1 < 0 < t2 by the same argument.

As a main example in our reverse-time framework, we focus on
arrival-rate functions that decay in a power away from the critical
point at time 0; i.e.,

λn(t) = 1 − cntp, t ≥ 0, (6)

for some real number p ≥ 0. In comparison to [11] and Section 4,
note that p is not restricted to being an integer, but p = 1 and p = 2
are especially interesting.

We emphasize that we are concerned with large time, i.e., time
scaled by n as n → ∞, so that we need to consider the scaled
version

λn(nt) = 1 − cn(nt)p, t ≥ 0, (7)

wherewe allown → ∞. Note that p = 0 in (6) and (7) corresponds
to a constant arrival rate of 1 − cn, which produces a constant
negative drift of 1 − cn. The following result covers this stationary
model as a special case.

Theorem 3.1 (Conventional FCLT for the Arrival Process). If, in
addition to the FCLT for N̂n in (3),

Λ̂n → Λ̂ in D, (8)

for Λ̂n defined in (4) and (5), then

Ân ⇒ caBa + Λ̂ in D as n → ∞. (9)

Under assumption (6), the limit in (8) holds if and only if

cnn(2p+1)/2
→ c as n → ∞, 0 < c < ∞, (10)
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