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1. Introduction

In this paper, we consider a dynamic portfolio optimization
problem where investors face a challenge of how to allocate their
wealth over a set of available assets to maximize their terminal
wealth. By optimizing expected log-utility over a single investment
period, the obtained portfolio, referred to as the growth-optimal
portfolio, is shown to be optimal with respect to several interest-
ing objectives in a classical stochastic setting. For example, [5,2]
independently demonstrate that the growth-optimal portfolio will
eventually accumulate more wealth than any other causal invest-
ment strategy with probability 1 in the long run. Moreover, it also
minimizes the expected time required to reach a specified wealth
target when the target is asymptotically large; see, e.g., [2,1]. For
the readers interested in the history and the properties of the
growth-optimal portfolio, we refer to [3,9,10]. Nonetheless, de-
spite its theoretical appeals, there are many reasons why the prac-
tical relevance of the growth-optimal portfolio remains limited.

First, empirically the growth-optimal portfolio is shown to be
highly volatile in the short run. Moreover, the calculation of the
growth-optimal portfolio requires full and precise knowledge of
the asset return distribution. In practice, this distribution is not
available and has to be estimated from sparse empirical data.
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Therefore, the growth-optimal portfolio is prone to statistical esti-
mation errors. [ 12] extends the growth-optimal portfolio to more
practical settings by proposing a fixed-mix investment strategy
that offers a similar performance guarantee as the classical growth-
optimal portfolio but for a finite investment horizon. Moreover,
the proposed performance guarantee is not distribution-specific
but remains valid for any asset return distribution within the pre-
scribed ambiguity set of serially uncorrelated distributions.

Our contribution in this paper is to extend the results in [12]
to the case with non-zero autocorrelations (also known as, serial
correlations). These autocorrelations can be used to incorporate
beliefs of the investors about market movements as well as
seasonality in asset returns; see e.g. [13,7]. Moreover, we prove
that these autocorrelations can be absorbed in the covariance
matrix underlying the asset return distribution. Finally, we remark
that all of the discussed dynamic investment strategies, namely
the classical growth-optimal portfolio, the robust growth-optimal
portfolio (see [12]), and the extended robust growth-optimal
portfolio (proposed in this paper), share similar computational
advantage, in the sense that, all of them can be obtained with
relative ease by solving static optimization problems.

The rest of the paper is structured as follows. In Section 2
we explain how we model the distributional ambiguity in
financial markets, and in Section 3 we define the risk measure,
namely worst-case growth rate, to assess the performance of
each individual portfolio. An analytical formula for the worst-
case growth rate is then derived in Section 4. A couple of
numerical experiments are also given in this section. Finally, we
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provide an approximate worst-case growth rate for a more general
probabilistic setting in Section 5.

Notaion. We denote the space of symmetric matrices in R"*" by
S™. For any symmetric matrices X and Y with the same dimension,
we denote their trace scalar product by (X, Y). Moreover, for a
positive semidefinite X e S", we define X'/? as its principle square
root. We also define 1 as a column vector of ones and I as an identity
matrix. Their dimensions should be clear from the surrounding
context. Random variables are represented by symbols with tildes.
We denote by & the set of all probability distributions P on R",
and we represent by Ep(-) and COVy (-, -) the expectation and the
covariance of the input random parameter(s) with respect to the
probability distribution P. Throughout the paper, we assume that
the investment horizonis givenby 7 = {1, 2, ..., T} and the asset
universe is given by & = {1, 2, ..., N}. Moreover, for a complex
number c, we denote its real part by Re(c). Finally, we define (t)r
as the residue of t modulo T. Note that for any t € Z, (t)r takes a
value from {0, ..., T — 1}.

2. Distributional setting: stationary means, variances, and
autocorrelations

In this section, we describe the setting of the probability
distributions IP of the asset returns [f'f]rT=l .We define the ambiguity
set

Ep (Ft,i) = Wi VieN VteT
P =1Pe P : COVs (Fsi Frj) = Pe—sy0i )
Vi,jeN Vs, teT

where 4 = [uiliewy € RN stands for the vector of expected
asset returns and X = [ojjlijes € SN stands for the covariance
matrix of asset returns. Both p and X are assumed to be stationary,
i.e., they remain unchanged over time. This choice of ambiguity
set & is nicely motivated in [11]. In contrast to [12] which
assumes uncorrelatedness between asset returns at different
trading periods s and t, we allow them to be correlated with
correlation p(—s);.

Next, we consider a fixed-mix strategy (see [12]) generated by
a portfoliow € W C RY, where W is a convex polyhedral
of allowable portfolios. That is, we assume that portfolio weights
revert to w at every rebalancing date t € 7. In order to avoid
clutter, we denote the portfolio return during the trading period
t by 5 = WTF. It is clear that, under the distribution P of asset
returns, we have that
Ep() =w'pw and COVp(s, ) = p—s); W' ZW

Vs, t e 7.

Equivalently put, the mapping 7, = W', projects # to an

ambiguity set & (w) defined as

Ep(ie) =w'p VteT
P(w) =P e P! : COVp(ils, 7it) = prr—syy W EW .

Vs, t e T

The projection property of the ambiguity set (see, for example,
[15, Theorem 1] and [12, Proposition 2]) further asserts the
existence of the inverse mapping from # (w) to &. Hence, from the
next section onward, we will study the performance of an arbitrary
portfolio w using the projected ambiguity set #(w) instead of the
original ambiguity set &, since maneuvering & (w) often leads to
an optimization problem with a smaller dimension.

3. Portfolio performance measure: worst-case growth rate

In a friction-less market, a fixed portfolio w repeatedly invested
over the investment horizon 7 leads to a total return of

[Ta+wi) =exp (Z log(1 + wTﬁ)) :

teT teT

which is a random amount. An intuitive performance measure
for this portfolio would thus be an expectation of its logarith-
mic terminal wealth E (), (log(1+w'#))). A portfolio that
maximizes such utility function is referred to as a growth-optimal
portfolio. This portfolio exhibits many intriguing asymptotic prop-
erties, and some of them are discussed in Section 1. Moreover, if
the asset return distribution is serially independent and identically
distributed, then the growth-optimal portfolio can be obtained by
solving a static optimization problem maxyey E (log(1 + w'Fy)).
However for a finite T (especially when T is small), the expecta-
tion criterion becomes risky (as the central limit theorem fails)
and accordingly [12] proposes to use a quantile criterion instead
of the expectation criterion. Precisely speaking, [ 12] approximates
log(1+wT'#;) by a second-order Taylor expansion around w'#, = 0
and employs recent advances in distributionally robust optimiza-
tion (see [16]) to determine the worst-case growth rate by solving
the following optimization problem

Ge(w) = mVaX{V :JI”(;;(wTﬁ—;(wTﬂ)z) > y)z 1—¢
VIPGIP}
1 1,
= m;ax{y :P<T;<m_2m) Zy) >1—¢
V]P’ej’(w)}

where the ambiguity set in [12] is the restriction of ours where
pe = O0foreveryt = 1,...,T — 1. The uncorrelatedness
assumption allows [12] to solve this distributionally robust
program efficiently because of the inherent temporal symmetry.
Our work relaxes this assumption in order to accommodate
investors’ beliefs and market seasonality. In particular, we show
that, despite the fact that the temporal symmetry breaks down,
we can still derive an analytical expression of 4.(w) by using
knowledge from linear algebra of circulant matrices; see e.g. [4].
We highlight that even though the relaxation does not change the
problem greatly, it still requires us to develop new mathematical
techniques to accommodate these changes.

4. Derivation of worst-case growth rates

By using the semidefinite program reformulation for distribu-
tionally robust quadratic chance constraints provided in [16], we
can rewrite G.(w) as
Ge(w) = max y
st. MeSTT'  BeR,yeR

B+ 1(2w),M) <0, M>0

1 1 (1)
-1 -1
M- | 2 2 |»o,
——17 T —
: yT -8B

where 2(w) > 0 is the projected second-order moment matrix
for a sequence of portfolio returns [7;];c; generated by any
distribution residing in 2 (w), i.e.,

wip - 17 1
|
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