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a b s t r a c t

We show that the manufacturer’s problem in two-stage push supply chains with price-only contracts
can be reformulated as a newsvendor problem with a modified demand distribution. This reformulation
provides additional managerial insights, facilitates the solution of a problem with competing retailers
under more general assumptions and reduces a number of three-stage problems to equivalent two-stage
problems.
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1. Introduction

We consider two-stage push supply chains with a single
retailer, a single manufacturer and a price-only contract. In the
basic fixed retail price model, studied by Lariviere and Porteus [4],
to be called LP in the sequel, themanufacturer acts as a Stackelberg
leader and determines the wholesale price. Subsequently, the
retailer, who faces an uncertain demand, determines the order
quantity in the newsvendor framework. Afterwards, the random
demand is realized. We also analyze an extension of this model
with multiple competing retailers studied in [7] and show that
the problem is solvable under more general assumptions on the
random demand distribution.

For the model with one retailer, the retail price is p > 0, the
manufacturer’s unit cost is c > 0, c < p, the wholesale price is w,
c ≤ w ≤ p, and the retailer order quantity is q. We assume zero
salvage price and zero shortage cost. All supply chain participants
are assumed to be risk-neutral. For a nondecreasing function s(x),
we define the elasticity of s(x)with respect to x as Es(x) =

xs′(x)
s(x) and

the elasticity of the slope of s(x)with respect to x as Es′(x) =
xs′′(x)
s′(x) .

The random demand for the end product, x, has cdf F(x), F̄(x) =

1 − F(x), and pdf f (x) with support on [0, ∞) so that f (x) = 0
for x < 0 and f (x) > 0 for x ≥ 0. We assume that f (x) is
twice differentiable for x > 0 and that limx→∞ f (x)x = 0. The
failure rate is defined as h(x) = f (x)/F̄(x) and the generalized
failure rate as g(x) = xh(x). F is IFR (increasing failure rate) if
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h′(x) ≥ 0 and F is DFR (decreasing failure rate) if h′(x) ≤ 0 [1];
F is IGFR (increasing generalized failure rate) if g ′(x) ≥ 0 (LP)
and, similarly, F is DGFR (decreasing generalized failure rate) if
g ′(x) ≤ 0. The partial expected value of x with upper limit z is
defined as G(z) =

 z
0 xf (x)dx.

In the next section,we study a supply chainwith a single retailer
and a single manufacturer and its extension to a supply chain with
competing retailers.

2. A two-stage supply chain with a fixed retail price and one
retailer

We assume in this section that the pdf f (x) has support on
[A, ∞), A ≥ 0. For a fixed w, the retailer’s newsvendor profit
maximization problem is

max
q≥A

Πr(q) = pS(q) − wq, (1)

where S(q) = E[min(q, x)] denotes the expected sales given
q; the maximization in (1) is restricted to q ≥ A because the
random demand x is at least A. The unique optimal order quantity
is given by q(w) = F̄−1


w
p


(observe that since w ≤ p, q(w) =

F̄−1


w
p


≥ F̄−1(1) = A). Since w = pF̄(q(w)), the optimal

retailer profit at q(w) is Πr(q(w)) = pG(q(w)). Given q(w), the
manufacturer’s profit maximization problem is maxw Πm(w) =

(w − c)q(w) and it can be reformulated in terms of q as

max
q≥A

Πm(q) = [pF̄(q) − c]q. (2)

LP proved that if F is IGFR, thenΠm(q) is unimodal and the problem
maxq≥A Πm(q) has a unique optimal solution q∗.
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In contrast to LP, we do not require that F is IGFR. In order to
simplify the exposition somewhat, we assume that g(x) ≤ 1 for
all x ≥ A. We show next that the unique optimal solution q∗ of
the manufacturer’s problem (2) is also the solution of a modified
single-stage newsvendor problem stated as

max
q≥A

Πc(q) = pSM(q) − cq, (3)

where SM(q) = EFM [min(q, x)] =
 q
0 F̄M(x)dx. FM is a modified

distribution defined as

FM(x) =


0, if x ≤ 0,

g(A+)
x
A
, if x ∈ (0, A],

1 − F̄(x)[1 − g(x)], if x > A,

(4)

where g(A+) = limx→A+ g(x) (the modified distribution FM was
originally proposed in [3]).

Our main result in this section is that problem (2) has a unique
optimal solution (proved by LP for IGFR distributions) (and also
that problem (3) has a unique solution) under the following less
restrictive assumption:

(A1) Ef (x) + 2 =
xf ′(x)
f (x) + 2 ≥ 0 for x > A.

The assumption (A1) was stated as condition (C2) in [9] and
as condition (D4)(i) (with a strict inequality) in [8]. Ziya et al. [9]
showed that (A1) implies the concavity of themanufacturer’s profit
function Πm(q). This assumption will also be used to facilitate the
solution of a two-stage supply chain with competing retailers later
in this section.

Theorem 1 (Solvability of the Manufacturer’s Problem). If (A1)
holds and g(x) ≤ 1 for all x ≥ A, then the modified distribution FM
given by (4) is well defined. Moreover, the profit functions in (2) and
(3) are unimodal on [A, ∞) and the unique optimal solutions q∗ of
problems (2) and (3) exist and are identical. If g(A+) ≥ 1 −

c
p , then

q∗
= A and if g(A+) < 1−

c
p , then q∗ > A, g(q∗) < 1 and q∗ satisfies

the condition

pF̄(q∗)[1 − g(q∗)] = c. (5)

Proof of Theorem 1. FM(x) is continuous on (−∞, ∞) because
FM(A−) = FM(A) = FM(A+) = g(A+), limx→∞ F̄(x) = 0 and
limx→∞ F̄(x)g(x) = limx→∞ f (x)x = 0. FM(x) is nondecreasing
on (−∞, ∞) if and only if F̄(x)[1 − g(x)] = F̄(x) − f (x)x is
nonincreasing for x > A. This is in turn equivalent to (A1). Thus,
since FM(x) is continuous and nondecreasing on (−∞, ∞), the
modified distribution FM is well defined.

The pdf for the modified distribution FM is given as

fM(x) =


0, if x ≤ 0,

g(A+)
1
A
, if x ∈ (0, A),

F̄(x)
x

{g ′(x)x + g(x)[1 − g(x)]}, if x > A.

Since
 u
l F̄(x)[1 − g(x)]dx = uF̄(u) − lF̄(l), for q > Awe have that q

A
F̄M(x)dx =

 q

A
F̄(x)[1 − g(x)]dx = qF̄(q) − AF̄(A).

Thus,

SM(q) =

 q

0
F̄m(x)dx =

q − g(A+)
q2

2A
, if q ∈ (0, A],

qF̄(q) − g(A+)
A
2
, if q > A.

Since (A1) implies that F̄(x)[1−g(x)] is nonincreasing for x > A,
dΠm(q)/dq = dΠc(q)/dq = pF̄(q)[1 − g(q)] − c is nonincreasing

for q > A. Thus, d2Πm(q)/dq2 = d2Πc(q)/dq2 ≤ 0 for q > A.
Consequently, Πm(q) and Πc(q) are concave on (A, ∞) and thus
unimodal on [A, ∞).

Therefore, if g(A+) ≥ 1 −
c
p , then dΠm(A+)/dq = dΠc(A+)/dq

= pF̄(A)[1 − g(A+)] − c = p[1 − g(A+)] − c ≤ 0. Thus,
since dΠm(q)/dq and dΠc(q)/dq are nonincreasing for q > A,
dΠm(q)/dq ≤ 0 and dΠc(q)/dq ≤ 0 for q > A which im-
plies that the unique optimal solution of both problems is given
by q∗

= A. On the other hand, if g(A+) < 1 −
c
p < 1, then,

since dΠm(A+)/dq = dΠc(A+)/dq = p[1 − g(A+)] − c > 0 and
limx→∞ dΠm(x)/dq = limx→∞ dΠc(x)/dq = −c < 0, the unique
optimal solution q∗ is such that q∗ > A, g(q∗) < 1 and it satisfies
the first order optimality condition dΠm(q∗)/dq = dΠc(q∗)/dq =

0 which can be written as (5). This completes the proof.

If F is IGFR then g ′(x) ≥ 0 for x > A or, equivalently, that
xf ′(x)
f (x) + g(x) + 1 ≥ 0 for x > A. Thus, since we assumed that
g(x) ≤ 1 for x ≥ A, (A1) holds so that the IGFR assumption on
F implies (A1). Xu and Bisi [8] state that a non-IGFR distribution
given in Example 2 in Ziya et al. [9] satisfies (A1) which shows that
(A1) is satisfied by some non-IGFR distributions. Paul [6] and Xu
and Bisi [8] obtained additional conditions, satisfied by some non-
IGFR distributions, under which Πm(q) is unimodal.

The following example presents a DGFR distribution that
satisfies (A1) and for which problem (3) is solvable.

Example 1. Let f (x) =
a

x(a+ln x)2
> 0, a ≥ 2 with support [1, ∞).

Thus, g(x) =
1

a+ln x is decreasing for x ∈ [1, ∞). Since a ≥ 2, (A1)
holds for x ∈ [1, ∞).

We can use the modified distribution FM to relate condition
(5) to an analogous condition for the single-stage newsvendor
problem maxq Π0(q) = pS(q) − cq. The well-known fractile
solution of this problem can be written as F̄(q∗) =

c
p . Since

S(q) represents the expected sales and F̄(q) = S ′(q) represents
the marginal expected sales, the fractile formula states that the
marginal expected sales are equal to the profit margin ratio c

p .
Similarly, since F̄M(x) = F̄(x)[1 − g(x)] for x > A, condition (5)
can be written as F̄M(q∗) =

c
p . Therefore SM(q) represents the

expected sales for the problem (3), F̄M(q) = S ′

M(q) represents
the correspondingmarginal expected sales and condition (5) states
that the marginal expected sales for problem (3) are equal to the
profit margin ratio c

p .
The following result extends Theorem 4 in LP (who assumed

that F is IGFR which implies (A1)) on the division of supply chain
profits by specifyingwhen themanufacturer captures less thanhalf
of the total supply chain profit.

Proposition 1 (Division of Supply Chain Profits). If (A1) holds and
g(A+) < 1−

c
p , then the profit ratio is Π∗

m
Π∗

r
= EG(q∗). Thus, if F is IFR

or G(x) is convex for x ≥ 0 such that g(x) ≤ 1, then Π∗
m ≥ Π∗

r ; if
G(x) is concave for x ≥ 0 such that g(x) ≤ 1, then Π∗

m ≤ Π∗
r .

Proof of Proposition 1. It follows fromTheorem1 that, if g(A+) <
1 −

c
p , then the equilibrium order quantity q∗ is such that q∗ >

A ≥ 0, g(q∗) < 1 and it satisfies the first order condition (5). Thus,
Π∗

r = pG(q∗), Π∗
m = [pF̄(q∗) − c]q∗

= pF̄(q∗)g(q∗)q∗ and

Π∗
m

Π∗
r

=
pF̄(q∗)g(q∗)q∗

pG(q∗)
=

[f (q∗)q∗
]q∗

G(q∗)
=

G′(q∗)q∗

G(q∗)
= EG(q∗).

If G(x) is convex (concave) for x ≥ 0 such that g(x) ≤ 1, then
G(0) − G(x) ≥ (≤)G′(x)(0 − x), which can be written as G′(x)x ≥

(≤)G(x), or, equivalently as EG(x) ≥ (≤) 1, and thus, since q∗ > 0
and g(q∗) < 1, Π∗

m
Π∗

r
≥ (≤) 1. This completes the proof.
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