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a b s t r a c t

We consider strategic problems in college admissions with score-limits introduced by Biró and Kiselgof.
We first consider the problem of deciding whether a given applicant can cheat the algorithm of Biró and
Kiselgof so that this applicant is assigned to a more preferable college. We prove its polynomial-time
solvability. In addition, we consider the situation in which all applicants strategically behave. We prove
that a Nash equilibrium always exists, and we can find one in polynomial time.
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1. Introduction

The stable matching model introduced by Gale and Shapley [6]
is one of the most important matching models from both the
theoretical and practical viewpoints. Gale and Shapley [6] proved
that there always exists a stable matching, and they proposed a
polynomial-time algorithm for finding a stable matching. One of
themost notable properties of the algorithm proposed by Gale and
Shapley [6] is the strategy-proofness for the proposing side [17]. In
this paper, we consider a problem inwhichwe assign applicants to
colleges based on their scores. In such a problem, it is desirable to
treat equally applicants with the same score, i.e., we accept/reject
all applicants with the same score. Based on a real system used
in Hungary, Biró and Kiselgof [4] proposed a variant of the stable
matching problem taking such a constraint into consideration.
They proved that there always exists a stable assignment in this
problem, and we can find a stable assignment in polynomial time.
However, they also proved that their algorithm is not strategy-
proof for applicants.

If an algorithm is not strategy-proof, then there exists a
possibility that we can cheat this algorithm. However, it is
reasonable to think that if finding a cheating strategy for this
algorithm is NP-hard (and the size of an instance is sufficiently
large), then it is not easy to manipulate it. Thus, it is important to
reveal the computational complexity of the problem of finding a
cheating strategy for an algorithm that is not strategy-proof.
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In this paper, we consider the following strategic problem
related to the model proposed by Biró and Kiselgof [4]. In this
problem, we are given some applicant. Then, the goal is to decide
whether this applicant can cheat the algorithm of [4] so that
this applicant is assigned to a more preferable college. We prove
that this problem can be solved in polynomial time (Section 3).
Furthermore, we consider the situation in which all applicants
strategically behave. We prove that a Nash equilibrium always
exists in this situation, and we can find a Nash equilibrium in
polynomial time (Section 4).

1.1. Related work

Recently, computational problems related to manipulation
of matching algorithms have been widely studied. In [9,19,3,
11,12,18,7], the authors considered cheating strategies for the
Gale–Shapley algorithm in the (classical) stablematching problem.
Huang [8] considered a cheating strategy in the stable roommate
problem. In [2], the authors considered a cheating strategy for
the probabilistic serial rule. Nasre [15] considered a cheating
strategy in the popular matching problem. Pini, Rossi, Venable,
and Walsh [16] proposed a mechanism such that the problem
of finding a cheating strategy for this mechanism is NP-hard.
Matsui [13] considered a game related to cheating strategies for
the Gale–Shapley algorithm. In [1], the authors considered a game
related to cheating strategies for the probabilistic serial rule.

It should be noted that Fleiner and Jankó [5] proposed a choice
function-based approach for the model proposed by Biró and
Kiselgof [4].
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2. Preliminaries

We denote by Z+ the set of non-negative integers. For each pair
of sets X, Y , each mapping µ: X → Y , and each element y in Y ,
we define µ−1(y) as the set of elements x in X such that µ(x) = y.
Assume that we are given a set X = {x1, x2, . . . , xk} and a strict
total order ◃ on X . In addition, we assume that xi ◃ xj for every
pair of integers i, j in {1, 2, . . . , k} such that i < j. Then, we write
◃: x1, x2, . . . , xk for representing this strict total order ◃. For each
subset Y of X , an element x in Y is said to be maximal in Y with
respect to ◃, if x ◃ y for every element y in Y \ {x}.

In college admissions with score-limits introduced by Biró and
Kiselgof [4], we are given a set [n] = {1, 2, . . . , n} of applicants and
a set C of colleges. Define m := |C |. For each applicant i in [n], we
are given a strict total order ≻i on C ∪ {i}. For each applicant i in
[n], the strict total order ≻i represents the preference list of i over
colleges. For each applicant i in [n] and each pair of colleges c1, c2 in
C , if c1 ≻i c2, then i prefers c1 to c2. Define ≻ := (≻1, ≻2, . . . ,≻n).
Furthermore, we are given a capacity function q: C → Z+. For
each applicant i in [n] and each college c in C , we are given a non-
negative integer si(c) that represents the score of i for c.

For each applicant i in [n], we denote by Si the set of strict total
orders on C ∪ {i}. Define S := S1 × S2 × · · · × Sn. An element in S
is called a profile. It should be noted that ≻ is a profile. A function
from C to Z+ is called a score-limit. Furthermore, a mapping from
[n] to [n]∪C is called amatching, ifµ(i) ∈ C∪{i} for every applicant
i in [n].

Assume that we are given a profile ◃= (◃1, ◃2, . . . , ◃n) in S.
For each score-limit ℓ and each applicant i in [n], we define Fi,◃(ℓ)
as the set of colleges c in C such that c ◃i i and si(c) ≥ ℓ(c). In
addition, for each score-limit ℓ and each applicant i in [n] such that
Fi,◃(ℓ) ≠ ∅, we define fi,◃(ℓ) as the maximal college in Fi,◃(ℓ)
with respect to ◃i. For each score-limit ℓ and each applicant i in
[n] such that Fi,◃(ℓ) = ∅, we define fi,◃(ℓ) := i. For each score-
limit ℓ and each college c in C , we define Gc,◃(ℓ) as the set of
applicants i in [n] such that fi,◃(ℓ) = c. For each score-limit ℓ and
each college c in C such that ℓ(c) > 0,we define a score-limit ℓ−

c by
ℓ−
c (c) := ℓ(c) − 1 and ℓ−

c (c ′) := ℓ(c ′) for each college c ′ in C \ {c}.
We call a score-limit ℓ anH-feasible score-limit with respect to◃, if
for every college c in C, |Gc,◃(ℓ)| ≤ q(c). In addition, an H-feasible
score-limit ℓwith respect to◃ is called anH-stable score-limitwith
respect to ◃, if for every college c in C , at least one of the following
conditions holds.

1. ℓ(c) = 0.
2. ℓ(c) > 0 and ℓ−

c is not an H-feasible score-limit with respect
to ◃.

This concept is motivated by a real system used in Hungary.
(Biró and Kiselgof [4] introduced another stability concept called
the L-stability. In this paper, we do not consider this stability
concept.) Biró and Kiselgof [4] proved that there always exists
an H-stable score-limit. Furthermore, they propose a polynomial-
time algorithm for finding an H-stable score-limit (see the next
subsection).

2.1. Algorithm of Biró and Kiselgof

Here we explain the algorithm of Biró and Kiselgof [4] for
finding an H-stable score-limit. We call this algorithm the BK-
algorithm. (Precisely speaking, Biró and Kiselgof [4] proposed this
algorithm as an applicant-oriented algorithm. They also proposed
another algorithm, called a college-oriented algorithm. Since an
applicant-oriented algorithm is the best for applicants in some
sense (see Theorem 2.1), we adopt this algorithm.) The input of the
BK-algorithm is a profile ◃= (◃1, ◃2, . . . , ◃n) in S. For computing
an H-stable score-limit with respect to ≻, we set ◃:= ≻.

Step 1: Define a score-limit δ0 by δ0(c) := 0. Define a matching
σ0 by σ0(i) := i. For each applicant i in [n], set L0(i) to be
the set of colleges c in C such that c ◃i i. Furthermore, set
R0 := {i ∈ [n] | L0(i) ≠ ∅} and t := 0.

Step 2: If Rt = ∅, then output δt and halt. Otherwise, set it to
be an applicant in Rt , and find the maximal college ct in
Lt(it) with respect to ◃it . Furthermore, set πt to be the
same matching as σt except that πt(it) = ct .

Step 3: If |π−1
t (ct)| ≤ q(ct), then go to (a). Otherwise, go to (b).

(a) Set δt+1 := δt and σt+1 := πt . In addition, set
Lt+1(it) := Lt(it) \ {ct}, and Lt+1(i) := Lt(i) for each
applicant i in [n] \ {it}.

(b) Set ∆t := min{si(ct) | i ∈ π−1
t (ct)} + 1. Further-

more, set δt+1 to be the same score-limit as δt except
that δt+1(ct) = ∆t . Set σt+1 to be a matching such
that

σt+1(i) =


i if i ∈ π−1

t (ct) and si(ct) < ∆t
σt(i) otherwise.

For each applicant i in [n], set

Lt+1(i) :=

Lt(i) \ {ct} if (i) i = it ,
or (ii) i ≠ it , si(ct) < ∆t

Lt(i) otherwise.

Set Rt+1 := {i ∈ [n] | Lt+1(i) ≠ ∅, σt+1(i) = i}, and
t := t + 1. Then, go back to Step 2.

The BK-algorithm is clearly a polynomial-time algorithm (we
assume that for every applicant i in [n] and every pair of elements
d1, d2 in C ∪ {i}, we can check in O(1) time whether d1 ◃i d2). It is
known [4, Theorem 3.1] that an output ℓ of the BK-algorithm with
an input profile ◃ in S is an H-stable score-limit with respect to ◃.
The following property of this algorithm is known.

Theorem 2.1 (Biró and Kiselgof [4, Theorem 4.1]). Assume that we
are given an output ℓ of the BK-algorithm with an input profile ◃ in
S. Then, for every H-stable score-limit ℓ′ with respect to ◃ and every
college c in C, we have ℓ(c) ≤ ℓ′(c).

In Step 2 of the BK-algorithm, there exists a freedom in the
choice of it . However, as proved below, this does not affect an
output of this algorithm. Although this fact was not explicitly
stated in [4], it immediately follows from Theorem 2.1.

Corollary 2.2. An output of the BK-algorithm with an input profile ◃
in S does not depend on the choice of it in Step 2.

Proof. Theorem 2.1 implies that for every college c in C and every
pair of outputs ℓ1, ℓ2 of the BK-algorithm, we have ℓ1(c) ≤ ℓ2(c)
and ℓ2(c) ≤ ℓ1(c), i.e., ℓ1(c) = ℓ2(c). This completes the proof. �

In what follows, for each profile ◃ in S, we denote by ℓ◃ the
output of the BK-algorithmwith an input profile ◃. In addition, for
each profile ◃ in S, we define a matching µ◃ by µ◃(i) := fi,◃(ℓ◃)
for each applicant i. If the BK-algorithm with an input profile ◃ in
S halts when t = T , then it is not difficult to see that µ◃ = σT .

3. Finding a cheating strategy

In this section, we consider the Cheating Score-Limit Algo-
rithm problem defined as follows. For each applicant i in [n],
a strict total order ◃i in Si is called a cheating strategy of i, if
µ◃(i) ≻i µ≻(i) holds, where ◃ is the profile in S obtained from ≻

by replacing ≻i by ◃i. For each applicant i in [n], we denote by CSi
the set of cheating strategies of i. Then, Cheating Score-Limit Al-
gorithm is formally defined as follows.
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