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a b s t r a c t

We study the problem of finding a degenerate scale for Laplace equation in a half-plane. It is shown that

if the boundary condition on the line bounding the half-plane is of Dirichlet type, there is no degenerate

scale. In the case of a boundary condition of Neumann type, there is a degenerate scale, which is shown

to be the same as the one for the symmetrized contour with respect to the boundary line in the full

plane. We show next a formula for obtaining the degenerate scale of a domain made of two parts, when

the components are far from each other, which allows to obtain the degenerate scale for the

symmetrized contour. Finally, we give some examples of evaluation of the degenerate scale both by

an approximate formula and by a numeric evaluation using integral methods. These evaluations show

that the approximate solution is still valid for small values of the distance between symmetrized

contours.

& 2013 Elsevier Ltd. All rights reserved.

1. Introduction

One considers for a given contour S all contours obtained by
any scaling of S. Early results by Jaswon [21], based on the work of
Muskhelishvili [23], showed that for any boundary S of a plane
domain, there is one and only one degenerate scale which leads to
the non-invertibility of the integral operator: q/cqðxÞ ¼

�
R

S lnJx�yJqðyÞ dSy. More precisely, it can be shown that there
is a distribution q(x) such that the application cqðxÞ is null for any
x. Hayes and Kellner [17] have shown using complex variables
that a degenerate scale is reached when the ‘‘transfinite diameter’’
of the outer domain, defined from a conformal mapping of the
domain from the outer unit circle, is equal to 1. From another
point of view, the transfinite diameter defined in the complex
plane is equal to the logarithmic capacity as shown by Hille [19].
The logarithmic capacity, whose definition is recalled in Section 5,
is defined without using a conformal mapping, which makes it
easier to handle. Yan and Sloan [29] give a review of the main
properties of the logarithmic capacity. It is possible to derive
analytically the logarithmic capacity of some domains by using
conformal mapping, for example for regular N-gon domains [22].
The numerical calculation of the logarithmic capacity has been
studied by Dijkstra and Hochstenbach [16] and Chen et al. [5].

The degenerate scale problem is still investigated by different
authors: Yan and Sloan [29] have studied the case of an open
boundary, Coscia and Russo [14] have studied the case of a
Lipschitz boundary. The problem has been extended to multiply
connected domains [6,8]. Many authors have discussed how to
eliminate this problem by scaling [12], by adding a constant to the
fundamental solution [12,5], by adding an unknown and an
additional equation [11,20], by adding an additional collocation
point [4] or by using an hypersingular formulation as noted by
Chen et al. [5]. Practically, a 2D problem can be very often
considered as an approximation of a 3D problem at the vicinity
of a finite line source. In this case, a specific kernel depending of
the geometry of the 3D problem can be defined [1]. This kernel
ensures that the scale of the 2D problem is smaller than the
degenerate scale if a condition ensuring that 2D modeling is well
adapted to the original 3D problem is satisfied. A more extended
review on the problem of degenerate scale for Laplace equation
can be found in Chen [3]. More generally, some authors have
studied the degenerate scale for other equations having a loga-
rithmic term in the Green function: elasticity in the plane
[18,13,26,27,9,10], biharmonic equation in the plane [15,6]. These
equations exhibit similar though more complicated behaviors,
with generally several degenerate scales.

This paper is devoted to the study of degenerate scales for
problems in a half-plane, which seems, from our knowledge, not
having been studied with as much extent as the problem in a full
plane. Elementary solutions of the Laplace equation for the half-
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plane is based on the method of images. This method has been
found very early by Thomson [25] and is still the object of
research (see e.g. [8,7]). In this paper, we use the results
established for the plane and draw next basic results for the case
of the half-plane, either for Dirichlet or Neumann boundary
conditions at the boundary of the half-plane. An approximate of
the degenerate scale for the exterior problem is given, when the
diameter of the inner boundary is small compared with the
distance between this inner boundary and the boundary line of
the half-plane.

2. Relation between the degenerate scale in a half-plane
and an associated problem in the full plane

We first recall the link between the loss of unicity of the
integral boundary equation and the existence of a non-trivial
solution of the equationZ

S
Gðx�yÞqðyÞ dSy ¼ 0, xAS ð1Þ

where Gðx,yÞ ¼ �ln Jx�yJ=2p. Assuming the loss of unicity for
Dirichlet condition, making the difference between two solutions,
we get a function u(x) with qðxÞ ¼ @u=@n satisfying the following
boundary equation, 1

2uðxÞþ
R

Sð@G=@nÞðx�yÞuðyÞ dSy ¼
R

SGðx�

yÞqðyÞ dSy with uðxÞ ¼ 0 for xAS and q being a non-null function
on S. The boundary integral equation then gives

R
SGðx�

yÞqðyÞ dSy ¼ 0 for xAS. Conversely, if there exists q a non-trivial
solution of (1), then the function uðxÞ ¼

R
SGðx�yÞqðyÞ dSy is a non-

null solution of the Laplace equation which vanishes on S.
The above argument for the plane can be applied for the half-

plane using the appropriate kernel. Then, the degenerate scale in
the half-plane is related to the non-invertibility of the operator
q/cqðxÞ ¼�

R
SGaðx�yÞqðyÞ dSy where Ga is the Green’s function

associated with conditions applied to the boundary line of the
half-plane. We can consider two different problems in the half-
plane according to the type of the condition at the line D
bounding the half-plane: Neumann condition if the normal
derivative is null on D or Dirichlet conditions if the function is
null on D (Fig. 1).

We consider the standard Green solution for Laplace equation
in the plane: Gðx,yÞ ¼�ln Jx�yJ=2p. For the half-plane, the image
method gives the following Green function:

Gaðx,yÞ ¼ Gðx,yÞþEGðx,yÞ ð2Þ

where x is the image of x, a¼N and E¼ 1 for Neumann condition
and a¼D and E¼�1 for Dirichlet condition on line D. Consider-
ing that many results are found in the literature on the degen-
erate scale in the plane, we intend to build a relation between the
degenerate scale in the half-plane for a given boundary and the
degenerate scale for an associate problem in the full plane.

Theorem 1. If a problem in the half-plane is at a degenerate scale,
then an associate problem can be built, which is at a degenerate scale

in the full plane.

Proof. We extend the function q defined on S1 to a function qa
defined on S1 [ S2 in the following way:

qaðyÞ ¼
qðyÞ if yAS1

EqðyÞ if yAS2

(
ð3Þ

with a¼N and E¼ 1 for Neumann condition and a¼D and E¼�1
for Dirichlet condition on line D. Using Gðx,yÞ ¼ Gðx,yÞ, we can
writeZ

S1

Gaðx,yÞqðyÞ dSy ¼

Z
S1

ðGðx,yÞþEGðx,yÞÞqðyÞ dSy

¼

Z
S1

Gðx,yÞqðyÞ dSyþ

Z
S1

Gðx,yÞEqðyÞ dSy

¼

Z
S1

Gðx,yÞqðyÞ dSyþ

Z
S2

Gðx,yÞqaðyÞ dSy

¼

Z
S1[S2

Gðx,yÞqaðyÞ dSy ð4Þ

If the domain S1 is at a degenerate scale, the integral operator is
not invertible for the problem in the half-plane with Neumann or
Dirichlet condition on the D line; therefore, there is a non-null
function q such that:

R
S1

Gaðx,yÞqðyÞ dSy ¼ 0.

Then, the extended function qa is such (4) thatR
S1[S2

Gðx,yÞqaðyÞ dSy ¼ 0.
Hence S1 [ S2 is at the degenerate scale for the problem in the

plane. This proves Theorem 1. &

This result is particularly useful, because it allows to apply all
results obtained in the plane for the symmetrized domain S1 [ S2.

Before to use this associate domain in Section 5, two general
results on the degenerate problems associated with Dirichlet or
Neumann boundary conditions will be established.

3. The Laplace problem in the half-plane with a Dirichlet
condition on the boundary line

In this section, we assume that a null Dirichlet condition is
applied on the boundary line. In this case, we establish the
following theorem:

Theorem 2. There is no degenerate scale for the Laplace problem in

the half-plane with Dirichlet condition on the boundary line.

Proof. AssumebycontradictionthattheboundaryS1isatthedegenera-
tescalefortheLaplaceprobleminthehalf-planewithDirichletconditi-
ononthelineboundingthehalf-plane. Thereexistsanon-nullfunction-
qsuchthat:

R
S1

GDðx,yÞqðyÞ dSy ¼ 0.

If we change the scale of the problem by a factor l (Fig. 2), we

define

qlðyÞ ¼ q
y

l

� �
ð5Þ

From the definition of GDðx,yÞ, we get GDðlx,lyÞ ¼ GDðx,yÞ. Hence,

we can writeZ
lS1

GDðx,yÞqlðyÞ dSy ¼ l
Z

S1

GDðlx,lyÞqðyÞ dSy

x

xx
y y

x

Fig. 1. The image method (left) and the symmetrization of the boundary (right).

x

Fig. 2. Change of scale.
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