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a b s t r a c t

We study the capacitated assortment and price optimization problem for customers with disjoint
consideration sets. The objective is to find the revenue maximizing set of products and their prices
subject to a capacity constraint on the total display space of the offered products. We formulate the
problem as a mathematical program and demonstrate its NP-hardness. We propose a fully polynomial-
time approximation solution scheme and show that when the weights of the products are identical, our
approach yields the optimal solution.

© 2017 Elsevier B.V. All rights reserved.

1. Introduction and related literature

It has been recognized that in many business situations, cus-
tomers can be classified into several distinct segments, each of
which can be identified by a unique consideration set that does not
overlap with one another; see, e.g., [13,19,17]. For example, cus-
tomers to a car dealership can be classified into segments based
on the types of products, or types of vehicles, they want to buy: a
segment that is interested in sedans and another segment that is
interested in Sport Utility Vehicles (SUVs). Since the segment that
is interested in sedans is unlikely to buy SUVs, while the segment
that is interested in SUVs is unlikely to buy sedans, the consider-
ation sets of these two segments do not overlap with each other.
Because thedifferent types of vehicles share the samedisplay space
within the dealership, the objective of the dealership is to find the
revenue maximizing set of vehicles as well as their prices to offer
subject to a capacity constraint on the total display space of the of-
fered products. This problem is called the Capacitated Assortment
and Price Optimization Problem (CAPOP) for customers with dis-
joint consideration sets.

The CAPOP for customers with disjoint consideration sets is a
problem that has not been thoroughly studied in the literature.
For the special case when there is only a single customer seg-
ment and the weights of the products are identical, Chen and
Hausman [6] model customer choice using the multinomial logit
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(MNL) model and formulate the CAPOP as a non-linear program
with discretized prices, whose coefficient matrix is totally uni-
modular. Later,Wang [18] develops an efficient algorithm to obtain
the optimal assortment and price when the prices of the products
can be any arbitrary real number. Recently, Besbes and Sauré [3]
study the competition among retailers who compete in both as-
sortment and price, and show that there exists one equilibrium for
competitive retailers who offer non-overlapping products. When
there is no capacity constraint, Gallego and Topaloglu [7] propose
a linear programming based method to obtain the optimal solu-
tion to the joint assortment and price optimization problem un-
der the nested logit model. Moreover, Alptekinoğlu and Semple [1]
and Jagabathula and Rusmevichientong [11] investigate the as-
sortment and price optimization problem under the exponomial
choice and non-parametric models, respectively.

In this paper, we investigate the CAPOP for customers with dis-
joint consideration sets. Specifically, we model customers’ pur-
chase behavior using the multinomial logit model with disjoint
consideration sets, or the MNLDmodel. The MNLDmodel is first in-
troduced by Liu andVan Ryzin [14] and has beenwidely used in the
literature of network revenue management; see, e.g., [19,14,20].
It first partitions products into several non-overlapping groups,
each of which corresponds to the disjoint consideration set for a
customer segment. Customers in a particular segment only con-
sider purchasing products in one of the consideration sets, follow-
ing the standard MNL model. In the car store example, there are
two customer segments whose consideration sets are composed of
sedans and SUVs with different brands and configurations, respec-
tively. Note that when there is only one customer segment with a
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consideration set of all the products, the MNLD model reduces to
the standard MNL model.

We summarize the contributions of this research as follows:
(a) To the best of the authors’ knowledge, this research is the first
of its kind to investigate the CAPOP for customers with disjoint
consideration sets; (b) we model customers’ purchase behavior
using the MNLD model and demonstrate the NP-hardness of the
corresponding revenue maximization problem; (c) We develop a
fully polynomial-time approximation solution scheme based on
dynamic programming, where a series of multiple-choice binary
fractional knapsack problems are solved; and (d) We show that
when the weights of the products are identical, our approach finds
the optimal solution.

2. Modeling framework

Assume that the retailer, or the dealership in our previous
example, has a total of n possible products, indexed by N =

{1, 2, . . . , n}, and there are L customer segments with disjoint
consideration sets. Under theMNLDmodel, these products are first
partitioned into L disjoint groups, denoted asN1,N2, . . . ,NL where
∪

L
l=1 Nl ⊆ N and Nl ∩ Nl′ = ∅ for all l ≠ l′. Customers in segment

l ∈ {1, 2, . . . , L} come to the system with probability αl and
only consider purchasing products in set Nl or leave immediately.
This implies that

L
l=1 αl

= 1. We further assume that for each
product, there is a set of pre-determined price levels, which is not
unreasonable because most, if not all, prices of cars end in 9. For
example, the price of a 2015 Volkswagen Jetta 1.8T SE may be
21,999 dollars. We assume that each product can be offered at m
price levels, indexed by M = {1, 2, . . . ,m}. Our notation implies
that the number of possible price levels for each product is the
same, which is only for notational brevity and our results can be
easily applied to the case when the numbers of price levels differ
across products. For each product i ∈ N , let wi ∈ Z+ be its weight,
or required display space, and pij be its price at the jth price level.
Given a capacity constraint c ∈ Z+ on the total weight of the
products, the retailer wishes to find the subset of products as well
as their corresponding price levels that maximizes the expected
revenue.

Under such a setting, let Sij = 1 indicate that product i at price
level j is offered; and Sij = 0, otherwise. Thismeans that


j∈M Sij ≤

1. Thus, the CAPOP can be treated as a modified variant of the
classical assortment problem with side constraints. Additionally,
for product i ∈ N with price pij, its utility is denoted as vij, where
vij ≤ vij′ holds if pij ≥ pij′ ,∀i ∈ N to reflect the fact that when
the price of the product increases, it becomes less attractive to
customers. Moreover, as a convention, we set the utility for the no-
purchase option as one.

Given the above, for a feasible assortment S = [Sij]n×m, a
customer in segment l will purchase product i at price level j with
a probability of

Pij(S) =


0, i ∉ Nl;

vijSij/


1+


i∈Nl


j∈M

vijSij


, i ∈ Nl;

(1)

and he or she will leave without purchasing anything with
probability P0(S) = 1/(1 +


i∈Nl


j∈M vijSij). Then, the CAPOP

under the MNLD model can be formulated as follows:

z∗ = max R(S) =
L

l=1

αl



i∈Nl


j∈M

pijvijSij

1+

i∈Nl


j∈M

vijSij

 (2)

s.t.

i∈N


j∈M

wiSij ≤ c, (3)


j∈M

Sij ≤ 1, ∀i ∈ N, (4)

Sij ∈ {0, 1}, ∀i ∈ N, j ∈ M. (5)

This problem is a special case of the constrained hyperbolic binary
programming problem, whose applications and computational
complexity issues are discussed in [15,5]. Note that when Nl = {l}
for all l ∈ {1, 2, . . . , L}, we can have R(S) =

L
l=1


j∈M(αlpljvlj/

(1 + vlj))Slj because of Eq. (4). In this case, the CAPOP under
the MNLD model reduces to a multiple-choice knapsack prob-
lem, which is a well-known NP-hard problem; see, e.g., [8,12].
Therefore, the following complexity result is immediately estab-
lished.

Lemma 1. The CAPOP under the MNLD model is NP-hard.

3. Solution approach

For the CAPOP under the MNLD model, it may appear that
whether to offer product i ∈ Nl′ does not directly affect the
revenue obtained from customers in segment l ≠ l′, because there
are no explicit l′-segment related terms in the revenue associated
with segment l, that is, Rl(Sl) =


i∈Nl


j∈M pijvijSij/(1 +

i∈Nl


j∈M vijSij) and Sl = [Sij]nl×m, where nl = |Nl|. However,

products in Nl and Nl′ do interact because they compete for the
limited display space and the retailer has to decide the capacity
allocated to products in Nl and Nl′ . This prompts us to design
a dynamic programming based solution approach to optimally
allocate the limited capacity among these products.

To construct the dynamic program, define Θl(b) as the max-
imum expected revenue that we can obtain if the capacity con-
sumption of offered products in Nl ∪ · · · ∪ NL for customers in
segments l to L is bounded by b ∈ Z+. Define Rl(Sl, bl) =

i∈Nl


j∈M pijvijSij/(1+


i∈Nl


j∈M vijSij) :


i∈Nl


j∈M wiSij ≤

bl;


j∈M Sij ≤ 1,∀i ∈ Nl

, then the Bellman equation can be ex-

pressed as follows:

Θl(b) = max
bl≤b


αl max

Sl∈Ωl(bl)
{Rl(Sl, bl)} +Θl+1(b− bl)


,

∀l ∈ {1, 2, . . . , L}; bl, b ∈ {0, 1, . . . , c}, (6)

where Ωl(bl) is the set of all feasible assortments that Ωl(bl) =
Sl = [Sij]nl×m :


i∈Nl


j∈M wiSij ≤ bl;


j∈M Sij ≤ 1,∀i ∈ Nl


.

And the boundary conditions are ΘL+1(·) = 0. We compute the
values of


Θl(b) : l ∈ {1, 2, . . . , L}; b ∈ {0, 1, . . . , c}


and the

value of Θ1(c) corresponds to maximum expected revenue, z∗ in
Eq. (2).

In the dynamic program above, we have to enumerate not
only the values of b ∈ {0, 1, . . . , c} in each state, but also the
feasible assortments formed by the products. Define Rl(bl) =
maxSl∈Ωl(bl){Rl(Sl, bl)}, which corresponds to the maximum ex-
pected revenue we can obtain if the next customer is interested
in class l and bl units of capacity are allocated for products in Nl.
We give an alternative characterization of Rl(bl) in the following
lemma, following a transformation technique similar to [7]:

Lemma 2. Let λ∗ be the value of λ that satisfies

λ = max


i∈Nl


j∈M

vij(pij − λ)Sij : Sl ∈ Ωl(bl)


, (7)

then λ∗ = Rl(bl). Furthermore, the optimal solution to the problem

max
Sl∈Ωl(bl)


i∈Nl


j∈M

vij(pij − λ∗)Sij


(8)

corresponds to the optimal solution to Rl(bl).
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