
Operations Research Letters 45 (2017) 181–186

Contents lists available at ScienceDirect

Operations Research Letters

journal homepage: www.elsevier.com/locate/orl

Optimal information disclosure policies in a strategic queueing model
Bara Kim a, Jeongsim Kim b,∗

a Department of Mathematics, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul, 02841, Republic of Korea
b Department of Mathematics Education, Chungbuk National University, 1 Chungdae-ro, Seowon-gu, Cheongju, Chungbuk, 28644, Republic of Korea

a r t i c l e i n f o

Article history:
Received 16 July 2016
Received in revised form
30 January 2017
Accepted 8 February 2017
Available online 16 February 2017

Keywords:
Queueing model
Equilibrium strategies
Optimal policies

a b s t r a c t

We find the optimal policy for the information disclosure problem of theM/M/1 queue studied by Simhon
et al. (2016). Our optimal disclosure policy is as follows: the service provider informs all customers of the
queue length when the queue length is above a specified threshold and does not inform them when the
queue length is below the threshold.

© 2017 Elsevier B.V. All rights reserved.

1. Introduction

The economic analysis of queueing systems with strategic
customer behavior has gained a considerable amount of interest
since the works of Naor [8] and Edelson and Hildebrand [3] were
published. Information on the queue length is an important factor
for customers who make the decision whether to join a queue
or not. Queueing systems with strategic customer behavior are
usually divided into two groups: observable and unobservable
queues. In an observable queue customers are informed of the
queue length upon arrival, whereas in an unobservable queue
customers are not informed of the queue length upon arrival. For
more details, refer to Hassin and Haviv [6].

It is important to investigate if it is effective for the service
provider (server) to provide the information on the queue length
to customers, with the intention to increase the service provider’s
own profit (revenue). There has been a large amount of research
on the effects of the information level on the strategic behavior
of customers, and on the service provider’s profit. For example,
Economou and Kanta [2] considered an M/M/1 queue in which
the waiting space of the system is partitioned into compartments
with fixed capacity for customers. Before entering, customers
are informed which compartment they will enter and/or the
position within the compartment. Guo and Zipkin [4] considered
an M/M/1 queue with a nonlinear waiting cost function, which is
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also dependent on the delay sensitivity of the customers. Hassin
and Koshman [7] considered an M/M/1 queue where arriving
customers cannot observe the queue length, but are only informed
if the queue length is either above or below the threshold (i.e., the
congestion level is either high or low). Dobson and Pinker [1]
developed a stochasticmodel of a custom-production environment
in which customers have different tolerances for waiting. The firm
(service provider) has the option to share different amounts of
information about the lead time that a customer may incur. For a
summary of information control, refer to Section 3.5 of the book by
Hassin [5]. In addition, Shone et al. [9] studied the conditions for the
equality of effective arrival rates (the rates at which customers join
the queue for service) between the observable and unobservable
M/M/1 queues.

The objective of this paper is to find the optimal information
disclosure policy that the service provider should adopt to
maximize its own profit. We assume that the service provider
has a fixed income from each customer who joins the queue, so
the service provider should maximize the effective arrival rate
to maximize its own profit. That is, the objective of the service
provider is to maximize the throughput of the system. Simhon
et al. [10] studied the optimal information disclosure policies in an
M/M/1 queue. They proved that the policy of informing customers
about the current queue length when the queue length is below
a specified threshold and hiding the information when the queue
length is above the threshold, is never optimal.

In this paper, we will find the optimal information disclosure
policy in the M/M/1 queue. Our optimal policy is as follows: the
service provider informs all customers of the queue length when
the queue length is above the specified threshold and does not
inform them when the queue length is below the threshold.
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The paper is organized as follows. In Section 2, we describe the
model and briefly discuss the customer’s equilibrium strategies
under a policy adopted by the service provider. In Section 3, we
find the optimal information disclosure policy.

2. The model

We consider an M/M/1 queue with first-come first-served
discipline. Customers arrive according to a Poisson process with
rate λ, and they are allowed to decide whether to join or balk
upon arrival. The service times are independent and exponentially
distributed with mean µ−1. The cost to a customer for staying in
the system (either waiting or being served) is C per unit of time.
All customers have the same reward R from completion of service,
where R > C

µ
(if R ≤

C
µ
, then customers have no incentive to join

the queue). We denote by ρ =
λ
µ
the offered load of the system.

We consider a state-dependent information disclosure policy u,
which is represented by a mapping from Z+ to [0, 1]. The value
u(i), i ∈ Z+, is the probability that the service provider gives the
information to an arriving customer when there are i customers in
the system (including the customer being served). Let U be the set
of all information disclosure policies. If u(i) = 1 for all i ≥ 0, then
this information disclosure policy is denoted by u+. In this case it
is exactly the observable model presented by Naor [8]. If u(i) = 0
for all i ≥ 0, this information disclosure policy is denoted by u−.
In this case it is the unobservable model presented by Edelson and
Hildebrand [3].

An arriving customer decides to join or to balk depending on
her expected waiting cost and reward. The customers are assumed
to know the policy of the service provider when they choose their
strategies. A customer will join the queue if the expected waiting
cost (including the cost due to her service), given the available
information on the queue length, is smaller than the reward, and
will balk if it is larger than the reward. We consider a customer’s
strategy of joining s, which is represented by a mapping from
Z+

∪{∆} to [0, 1]. Specifically, s(i), i ∈ Z+, is the probability that an
arriving customer joins the queue when this customer is informed
that there are i customers in the system, and s(∆) is the probability
that an arriving customer joins the queue when this customer is
not informed of the queue length.

Let N(t) be the number of customers in the system at time t . If
the policy u is adopted by the service provider and the strategy s is
adopted by the customers, then the distribution of the stochastic
process {N(t) : t ≥ 0} is determined. If N(t) has a stationary
distribution under (u, s), then the stationary distribution is unique.
Letπu,s(i), i ∈ Z+, denote the stationary distribution ofN(t) under
(u, s), if it exists. For a given policy u, a strategy s is an equilibrium
strategy if and only if N(t) has the stationary distribution and the
following conditions hold:

• if i <
Rµ
C

− 1, then s(i) = 1; (1)

• if i >
Rµ
C

− 1, then s(i) = 0; (2)

• if

∞
j=1

πu,s(j)(1 − u(j))j

∞
j=0

πu,s(j)(1 − u(j))
<

Rµ
C

− 1, then s(∆) = 1; (3)

• if

∞
j=1

πu,s(j)(1 − u(j))j

∞
j=0

πu,s(j)(1 − u(j))
>

Rµ
C

− 1, then s(∆) = 0. (4)

Eq. (1) means that an informed customer will join the queue if her
expected cost for staying in the system is less than the reward R,
i.e., (i+1) C

µ
< R. Eq. (2)means that an informed customerwill balk

if her expected cost is greater than R, i.e., (i+1) C
µ

> R. If i =
Rµ
C −1,

then the informed customer is indifferent between joining and
balking, and so s(i) can take any value in [0, 1]. Eq. (3) means that
an uninformed customer will join the queue if her expected cost is
less than R. Eq. (4) means that an uninformed customer will balk if

her expected cost is greater than R. If


∞
j=1 πu,s(j)(1−u(j))j
∞
j=0 πu,s(j)(1−u(j)) =

Rµ
C − 1,

then uninformed customers are indifferent between joining and
balking, and so s(∆) can take any value in [0, 1]. Note that the
conditions of (3) and (4) require


∞

j=0 πu,s(j)(1−u(j)) ≠ 0. Hence,
if


∞

j=0 πu,s(j)(1 − u(j)) = 0, then s(∆) can take any value in
[0, 1]. In this case, if πu,s(i), i ∈ Z+ is the steady state distribution
of N(t), then the service provider informs all arriving customers
of the queue length. Therefore, customers do not need to use the
probability s(∆).

The service provider’s objective is to maximize its own profit
generated from service completions. Let Tu,s be the long run rate of
service completions under (u, s). Then Tu,s is given by

Tu,s = µ(1 − πu,s(0)),

if the probability of the server being idle, at the steady state, is
πu,s(0). For a policy u ∈ U, let Su be the set of all equilibrium strate-
gies with respect to u. It can be shown that Su ≠ φ for every u ∈ U.
The proof can be found in Appendix A. If s is an equilibrium strat-
egy for u, i.e., s ∈ Su, thenN(t) has a unique stationary distribution,
πu,s(i), i ∈ Z+. Hence πu,s(0) > 0 if s is an equilibrium strategy for
u. A policy u∗ is optimal if and only if

Tu∗,s∗ ≥ Tu,s for all u ∈ U, s ∈ Su, and s∗ ∈ Su∗ .

In the following two examples, we present the equilibrium
strategies and the stationary idle probabilities, when the two types
of policies, u+ and u−, are used by the service provider.

Example 1 (When the Policy u+ is Adopted). Suppose that an
arriving customer is informed that there are i customers in the
system (at the arrival instant). Consider the two cases where Rµ

C
is not an integer and where Rµ

C is an integer, separately. If Rµ
C is not

an integer, then s ∈ Su+
if and only if

s(i) =


1 if i ≤


Rµ
C


− 1,

0 if i >


Rµ
C


− 1.

Under u+ and s ∈ Su+
,N(t) is a birth and death process on a finite

state space {0, 1, . . . , [ RµC ]}, with birth rate λ from state i to state
i + 1 for all 0 ≤ i ≤ [

Rµ
C ] − 1 and death rate µ from i to i − 1 for

all 1 ≤ i ≤ [
Rµ
C ]. This is the standardM/M/1/[ RµC ] queue. Thus,

πu+,s(0) =
1

[
Rµ
C ]

i=0
ρ i

.

If Rµ
C is an integer, then s ∈ Su+

if and only if s(i) = 1 for all
i <

Rµ
C − 1 and s(i) = 0 for all i >

Rµ
C − 1. Under u+ and

s ∈ Su+
,N(t) is a birth and death process on a finite state space

{0, 1, . . . , Rµ
C }, with birth rate λ from state i to state i + 1 for

0 ≤ i ≤
Rµ
C − 2 and birth rate λ s( Rµ

C − 1) for i =
Rµ
C − 1. The
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