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a b s t r a c t

This paper focuses on the single-level reformulation of mixed integer bilevel programming problems
(MIBLPP). Due to the existence of lower-level integer variables, the popular approaches in the literature
such as the first-order approach are not applicable to theMIBLPP. In this paper,we reformulate theMIBLPP
as amixed integermathematical programwith complementarity constraints (MIMPCC) by separating the
lower-level continuous and integer variables. In particular, we show that global and local minimizers of
the MIBLPP correspond to those of the MIMPCC respectively under suitable conditions.
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1. Introduction

In this paper, we consider the mixed integer bilevel program-
ming problem (MIBLPP) of the form

min
x,y,z

F(x, y, z)

s.t. x ∈ X(y, z),
(y, z) ∈ S(x),

(1)

where some of the upper-level decision variables x are integer-
valued, F : ℜ

n1+n2+n3 → ℜ, X(y, z) is a nonempty closed subset in
ℜ

n1 for any (y, z) ∈ ℜ
n2+n3 , and S(x) is the set of globalminimizers

for the lower-level problem parameterized by x

min
y,z

f (x, y, z)

s.t. (y, z) ∈ Ξ(x),
(2)

where y represents the lower-level continuous variables, z
represents the lower-level integer variables, f : ℜ

n1+n2+n3 → ℜ is
a continuously differentiable function with respect to y, and Ξ(x)
is defined as

Ξ(x) :=

(y, z) ∈ ℜ

n2 × Z : g(x, y, z) ≤ 0, h(x, y, z) = 0


with a set of integers Z in ℜ
n3 and continuously differentiable

functions g : ℜ
n1+n2+n3 → ℜ

p, h : ℜ
n1+n2+n3 → ℜ

q with respect
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to y. Throughout this paper, we assume that the cardinality |Z | of
Z is finite and n2 > 0.

Bilevel programming problems have been intensively investi-
gated; see, e.g., the review articles [6,7]. Almost all investigations
in the literature are devoted to problems with only continuous
variables in the lower-level problem for which the popular way
is to reformulate it as a single-level problem, although there exist
many practical problems with integer variables in the lower-level
problem; see, e.g., [2,4,9,18]. There have also been some progresses
made on the numerical methods for solving linear MIBLPPs; see,
e.g, [2,3,17,20,23,24].

It is desirable to know whether there exists a minimizer before
solving the MIBLPP. Vicente et al. [22] studied the existence of
minimizers of linear MIBLPP for different cases corresponding to
particularizations of the upper-level and lower-level variables.
Unfortunately, for the case where there exist lower-level integer
variables and upper-level joint constraints, it is a difficult task to
give the existence of minimizers. In this paper, we assume that a
minimizer exists for the MIBLPP and focus on deriving its single-
level reformulation.

To the best of our knowledge, there are only a few publications
on developing numerical methods for solving MIBLPPs with non-
linear functions [10,12,16]. Our proposed single-level reformula-
tion in this paper makes it possible to develop more approaches
for solving MIBLPPs as what has been done for bilevel program-
ming problems with only continuous variables in the lower-level
problem.
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When there is no lower-level integer variable (n3 = 0),
we may replace the lower-level problem of the MIBLPP with
its Karush–Kuhn–Tucker (KKT) conditions, resulting in a mathe-
matical program with complementarity constraints (MPCC). Their
relations in the sense of global and local minimizers have been es-
tablished in [8] provided that the lower-level problem is convex
and Slater’s constraint qualification is satisfied. When there are
lower-level integer variables (n3 > 0), the lower-level problem
is clearly nonconvex and thus we cannot replace the lower-level
problem with its KKT conditions directly. In this paper, we refor-
mulate theMIBLPP as amixed integer mathematical programwith
complementarity constraints (MIMPCC) by separating the lower-
level continuous and integer variables. In order to investigate the
relations between theMIBLPP and theMIMPCC,we assume that for
any lower-level integer variables, the lower-level problem is solv-
able and convexwith respect to the continuous variables.We show
that the globalminimizers of theMIBLPP correspond to those of the
MIMPCC provided that for any lower-level integer variables, the
lower-level problem satisfies the generalized Slater’s constraint
qualificationwith respect to the continuous variables. Since bilevel
programming is generally nonconvex, it is difficult to find a global
minimizer and in some cases, one needs to be happywith obtaining
a local minimizer. Thus, it is also necessary to investigate the rela-
tions between the localminimizers of theMIBLPP and theMIMPCC.
The stronger Slater’s constraint qualification and the so-called re-
stricted inf-compactness condition are required to ensure that the
localminimizers of theMIBLPP correspond to those of theMIMPCC.

The rest of this paper is organized as follows. In Section 2
we give some background materials and preliminary results. In
Section 3 we reformulate the MIBLPP as a single-level MIMPCC.
In particular, we show that the global and local minimizers of the
MIBLPP correspond to those of the MIMPCC respectively under
some suitable conditions. Section 4 concludes the paper.

Notation: For any vectors a, b ∈ ℜ
n, a ⊥ b means that vector a

and vector b are perpendicular. Given a point x ∈ ℜ
n and a function

ϕ : ℜ
n

→ ℜ
m, ∇ϕ(x) denotes the transposed Jacobian of ϕ at x.

2. Preliminaries and preliminary results

We first review some constraint qualifications for convex
constrained sets. Let X be a convex constrained set defined by

X :=

x : φ(x) ≤ 0, ϕ(x) = 0


with a convex and continuously differentiable function φ : ℜ

n
→

ℜ
l and a linear function ϕ : ℜ

n
→ ℜ

d. The following two
constraint qualifications will be useful in the next section.

Definition 1. (i) We say that Slater’s constraint qualification
(SCQ) holds for X if ∇ϕ has the full column rank and there
exists x0 ∈ ℜ

n such that

φ(x0) < 0, ϕ(x0) = 0.

(ii) We say that the generalized Slater’s constraint qualification
(GSCQ) holds for X if there exists x0 ∈ ℜ

n such that

φ(x0) < 0, ϕ(x0) = 0.

It is obvious that GSCQ is strictly weaker than SCQ. For convex
programming problems, the global minimizers correspond to the
associated KKT points under GSCQ. Moreover, it is well-known
that SCQ for X is equivalent to Mangasarian–Fromovitz constraint
qualification (MFCQ) at any x ∈ X : ∇ϕ(x) has the full column
rank and there exists d such that

∇φi(x)Td < 0 i ∈ Iφ(x), ∇ϕ(x)Td = 0,

where Iφ(x) := {i : φi(x) = 0}. It also should be noted that GSCQ
for X is equivalent to constant rank MFCQ (CRMFCQ) introduced
in [15] at any x ∈ X: There exists d such that
∇φi(x)Td < 0 i ∈ Iφ(x), ∇ϕ(x)Td = 0.
It then follows that X admits a local error bound at any x ∈ X if
GSCQ is satisfied; see, e.g., [14, Corollary 4.1].

We next recall some stability results for the parametric
nonlinear programming problem
NLP(p) min

x
θ(x, p)

s.t. φ(x, p) ≤ 0,
ϕ(x, p) = 0

with functions θ : ℜ
n+m

→ ℜ, φ : ℜ
n+m

→ ℜ
l and ϕ : ℜ

n+m
→

ℜ
d. We denote the feasible region of NLP(p) as

X(p) := {x : φ(x, p) ≤ 0, ϕ(x, p) = 0},
and the optimal value function as
V(p) := inf{θ(x, p) : x ∈ X(p)}.
The following restricted inf-compactness condition introduced
in [5] is a weak condition ensuring the lower semi-continuity
of optimal value function. The popular inf-compactness condi-
tion [21] and uniform compactness [11] in the literature are both
strictly stronger than restricted inf-compactness; see [13, Pages
1224–1225] for the detailed discussions.

Definition 2 ([5, Hypothesis 6.5.1]). We say that restricted inf-
compactness holds at p̄ ifV(p̄) is finite and there exist a compact set
Ω and a positive number ϵ0 such that for all p ∈ Bϵ0(p̄) satisfying
V(p) < V(p̄) + ϵ0, NLP(p) has a solution in Ω .

Proposition 1. Let φ(·, p̄) be convex and continuously differentiable,
and ϕ(·, p̄) be linear. If the restricted inf-compactness holds at p̄ and
SCQ holds for X(p̄), then V is continuous at p̄.

Proof. The restricted inf-compactness implies that V is lower
semi-continuous at p̄; see, e.g., [5, Page 246]. Let x̄ be a minimizer
of NLP(p̄). Since SCQ implies that MFCQ holds at x̄, it then follows
from [11, Theorem 3.3] that V is upper semi-continuous at p̄. The
desired result follows immediately. �

Before ending this section, we point out that an MPCC is
equivalent to a mixed integer program by introducing binary
variables to replace the complementarity constraints when the
complementarity functions are continuous and the feasible region
is compact [1].

3. Single-level reformulation

This section focuses on the single-level reformulation of the
MIBLPP. Let Assumption 1 hold throughout this section.

Assumption 1. Assume that for any (x, z) ∈ ℜ
n1 ×Z , f (x, ·, z) and

g(x, ·, z) are convex and continuously differentiable functions, and
h(x, ·, z) is a linear function.

In order to give a single-level reformulation of the MIBLPP, we
need use a system of equalities and inequalities to characterize the
optimal solution set S(x) of problem (2). Although problem (2) is a
nonconvex problem, we observe that for any (x, z) ∈ ℜ

n1 × Z , the
problem
Pz(x) : min

y


f (x, y, z) : (y, z) ∈ Ξ(x)


is a convex problem under Assumption 1 and hence it is
possible to replace the lower-level problem with some KKT
conditions provided a certain regularity condition is satisfied.
The following two examples may give us some insights on how
to characterize S(x) by separating the lower-level integer and
continuous variables.
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