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a b s t r a c t

Quasi-Gaussian HJM models are a popular approach for modeling the dynamics of the yield curve. This
is due to their low dimensional Markovian representation, which greatly simplifies their numerical
implementation. We present a qualitative study of the solutions of the quasi-Gaussian log-normal HJM
model. Using a small-noise deterministic limit we show that the short rate may explode to infinity in
finite time. This implies the explosion of the Eurodollar futures prices in this model. We derive explicit
explosion criteria under mild assumptions on the shape of the yield curve.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

HJM models [10] are widely used in financial practice for
modeling fixed income, credit and commodity markets [1]. These
models specify the dynamics of the yield curve f (t, T ) as

df (t, T ) = σf (t, T )TdW (t) + σ T
f (t, T )

 T

t
σf (t, s)ds


dt, (1)

where W (t) is a vector Brownian motion under the risk-neutral
measure Q and {σf (t, T )}t≤T is a family of vector processes. The
numerical simulation of these models is complicated by the fact
that the entire yield curve f (t, T ) has to be simulated. Lattice and
tree simulation methods require an exponentially large number of
nodes. For this reason the simulation of these models is restricted
in practice to Monte Carlo methods.

The quasi-Gaussian HJM models [1–3,5,14] were introduced to
simplify the simulation of the HJM models. They are obtained by
assuming a separable form for the volatility σf (t, T )T = g(T )Th(t)
where g is a deterministic vector function and h is a k × k
matrix process. Such models admit a Markov representation of
the dynamics of the yield curve involving k +

1
2k(k + 1) state

variables. This simplifies very much their simulation, which can be
done either using Monte Carlo or finite difference methods [4,8].

We consider in this note the one-factor quasi-Gaussian HJM
model with volatility specification σf (t, T ) = k(t, T )σ (rt) where
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k(t, T ) = e−β(T−t), and σ(rt) is the volatility of the short rate
rt = f (t, t). This model admits a two state Markov representation.

It has been noted in [12,10] that in HJMmodelswith log-normal
volatility specification, that is for which σf (t, T ) = σ(t, T )f (t, T ),
the rates explode to infinity with probability one, and zero coupon
bond prices are zero. It is natural to ask if a similar explosive
phenomenon is present also in the quasi-Gaussian HJM model
with log-normal volatility σ(rt) = σ rt . This model is used in
financial practice for modeling swaption volatility smiles [6] and is
a particular case of a more general parametric representation [7].

We study in this note the qualitative behavior of the solutions
of this model. In the small-noise deterministic limit, we show
rigorously that the short rate may explode to infinity in a finite
time. More precisely, for sufficiently small mean-reversion β , the
deterministic approximation for the short rate has an explosion in
finite time, and an upper bound is given on the explosion time,
which is saturated in the flat forward rate limit. When Brownian
noise is taken into account, the explosion time has a distribution
around the deterministic limit.

This phenomenon has implications for the practical use of the
model for pricing and simulation. It implies an explosion of the
Eurodollar futures prices in this model, and introduces a limitation
in the applicability of the model for pricing these products to
maturities smaller than the explosion time.

2. Log-normal quasi-Gaussian HJMmodel

The one-factor log-normal quasi-Gaussian HJM model is
defined by the volatility specification

σf (t, T ) = σ rte−β(T−t). (2)
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The simulation of the model requires the solution of the stochastic
differential equation for the two variables {xt , yt}t≥0 [14,1]

dxt = (yt − βxt)dt + σ(λ(t) + xt)dWt , (3)
dyt = (σ 2(λ(t) + xt)2 − 2βyt)dt,

with initial condition x0 = y0 = 0. Here λ(t) = f (0, t) is the
forward short rate, giving the initial yield curve. The zero coupon
bonds are

P(t, T ) =
P(0, T )

P(0, t)
exp


−G(t, T )xt −

1
2
G2(t, T )yt


, (4)

with G(t, T ) ≥ 0 a non-negative deterministic function [1]. The
short rate is rt := f (t, t) = λ(t) + xt . Eqs. (3) can be expressed in
terms of the short rate as

drt = (yt − βrt + βλ(t) + λ′(t))dt + σ rtdWt , (5)
dyt = (σ 2r2t − 2βyt)dt,

with the initial condition r0 = λ0 := λ(0) > 0 and y0 = 0.
The solutions of the process (5) may explode with non-zero

probability. This will be discussed in a future paper [13]. When the
volatility σ = 0, there is no explosion. Indeed, when σ = 0, we
have

drt = (yt − βrt + βλ(t) + λ′(t))dt,
dyt = −2βytdt,

with the initial condition r0 = λ0 and y0 = 0. Thus yt ≡ 0, which
gives r ′

t = −βrt +βλ(t)+λ′(t). This ODE can be easily solvedwith
the result rt = λ(t).

3. Deterministic approximation

Instead of studying directly the distribution of the explosion
time of the process (rt , yt), we study a deterministic proxy of
Eqs. (5). In the limit when the Brownian noise in these equations
goes to zero, then (rt , yt) → (r(t), y(t)), where (r(t), y(t)) satisfy
the two-dimensional ODE:

r ′(t) = y(t) − βr(t) + βλ(t) + λ′(t), (6)
y′(t) = σ 2r2(t) − 2βy(t),

with r(0) = λ0 and y(0) = 0. The variable r(t) can be interpreted
as the deterministic approximation of the short rate rt and its
expected valueEQ

[rt ] for the small-noise limit. The pair (r(t), y(t))
is a deterministic approximation of the two-dimensional SDE (5).

We study here the qualitative properties of the solution for r(t).
Even though (6) is a system of 2D ODEs, we will show that r(t) can
be expressed as a solution to a 1D integral equation.

Proposition 1. r(t) satisfies the integral equation

r(t) = λ(t) +
σ 2

β

 t

0
r2(s)[eβ(s−t)

− e2β(s−t)
]ds. (7)

Proof. We can solve for y(t) as

y(t) = σ 2
 t

0
r2(s)e2β(s−t)ds. (8)

Substituting into (6) we get

r ′(t) + βr(t) = σ 2
 t

0
r2(s)e2β(s−t)ds + βλ(t) + λ′(t). (9)

Multiplying by the integrating factor eβt and integrating from 0 to
t , we obtain:

r(t)eβt
− λ0 = σ 2

 t

0

 u

0
r2(s)e2βse−βududs + λ(t)eβt

− λ0

= λ(t) + σ 2
 t

0

 t

s
r2(s)e2βse−βududs − λ0, (10)

which yields Eq. (7). �

We show next that if λ(t) is uniformly bounded, for sufficiently
large β or sufficiently small σ , r(t) is also uniformly bounded, and
hence there will be no explosion.

Proposition 2. Assume that λ(t) is uniformly bounded. Then, for
sufficiently large β or sufficiently small σ , we have

max
t≥0

r(t) ≤
β2

σ 2

1 −


1 − max

t≥0
λ(t)

2σ 2

β2

 . (11)

It follows that there will be no explosion.

Proof. We only give a proof for the large β result. The same result
holds for sufficiently small σ with a very similar proof.

For any t ∈ [0, T ], we have from Eq. (7)

r(t) ≤ max
0≤t≤T

λ(t) +


max
0≤t≤T

r(t)
2

σ 2

β


∞

0
[e−βs

− e−2βs
]ds, (12)

which implies that R(T ) := max0≤t≤T r(t) satisfies

R(T ) − R2(T )
σ 2

2β2
≤ max

0≤t≤T
λ(t). (13)

This implies that we have either (i) R(T ) ≤ R1(T ), or (ii) R(T ) ≥

R2(T ), with

R1,2(T ) :=
β2

σ 2

1 ∓


1 − max

0≤t≤T
λ(t)

2σ 2

β2

 . (14)

For large β , R(T ) is bounded by Proposition 2, while R2(T ) → ∞

as β → ∞. Therefore, for sufficiently large β > 0, we have R(T ) ≤

R1(T ). Taking now T → ∞, we have by the uniformly bounded as-
sumption maxt≥0 λ(t) < ∞. It follows that for sufficiently large β ,

max
t≥0

r(t) ≤
β2

σ 2

1 −


1 − max

t≥0
λ(t)

2σ 2

β2

 . (15)

We conclude that for sufficiently large β , r(t) is not explosive
and is indeed uniformly bounded as long as λ(t) is uniformly
bounded. �

Remark 1. From Proposition 2, it follows that maxt≥0 r(t) is
uniformly bounded as either β → ∞ or σ → 0, since

lim sup
β→∞

max
t≥0

r(t) ≤ lim sup
β→∞

β2

σ 2

1 −


1 − max

t≥0
λ(t)

2σ 2

β2


= max

t≥0
λ(t),

and the same result holds for σ → 0.

From Proposition 1, Proposition 2 and Remark 1, we immediately
get the following corollary.
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