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a b s t r a c t

In this paper, our sets are orthants in Rn and N , the number of them, is large (N > n). We introduce the
modified inclusion–exclusion formula in order to efficiently calculate the probability of a union of such
events. The new formula works in the bivariate case, and can also be used in Rn, n ≥ 3 with a condition
on the projected sets onto lower dimensional spaces. Numerical examples are presented.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

Let A1, . . . , AN be events in an arbitrary probability space.
In many applications we are interested to find probabilities of
Boolean functions of them. Boolean functions of events are used in
reliability theory,where consecutive events play an important role.
The classical results to obtain probabilities of Boolean functions of
A1, . . . , AN are the following. Inclusion–exclusion formula:

P(A1 ∪ · · · ∪ AN) = S1 − S2 + · · · + (−1)N−1SN , (1)

where

Sk =


1≤i1<···<ij≤k

P(Ai1 . . . Aij), k = 1, . . . ,N

and the formulas for P(r), the probability that at least r occur and
P[r], the probability that exactly r occur. We have:

P(r) =

N
i=r

(−1)i−r

r − 1
i − 1


Si, P[r] =

N
i=r

(−1)i−r

r
i


Si. (2)

In the literature (1) is frequently attributed to [8,5]. However, [4]
already obtained (1) and (2) as a special case.

Bounds for the probability of the union were given by [2]:
P
N

i=1 Ai


≤ S1. [1] generalized it and also gave lower bounds
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for the same probability. His bounds are:

P


N
i=1

Ai


≤ S1 − S2 + · · · + (−1)rSr , if r is odd

P


N
i=1

Ai


≥ S1 − S2 + · · · + (−1)rSr , if r is even.

[3] observed that if we use only S1, S2, then sharp bounds for the
probability of the union can be given:

P


N
i=1

Ai


≥

2
j + 1

S1 −
2

j(j + 1)
S2, where j = 1 +


2S2
S1


. (3)

[6,7] used linear programming to prove (3) and also gave sharp
lower and upper bounds for the union, using S1, S2, S3. [9,11,12]
observed that the sharp probability bounds, using S1, . . . , Sm, are
optimum values of LP’s that he called binomial moment problems.
In doing so, he opened a new research area: the discrete moment
problems. The term binomial moment comes from the fact that if
ξ is the number of events in A1, . . . , AN , which occur, then

Sk = E


ξ

k


, k = 1, . . . ,N. (4)

By conventionwewrite S0 = 1withwhich (4) holds also for k = 0.
Eq. (4) is a classical theorem and it is not knownwho proved it first.

Our events in this paper are orthants in the n-space, designated
by

A(z(1)), . . . , A(z(N)), (5)
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where z(1), . . . , z(N) are the vertices of the orthants (z(i)
∈ Rn, i =

1, . . . ,N). We assume that z(1), . . . , z(N) is an antichain in the
partially ordered set Rn, i.e., for no i, j (i ≠ j) do we have z(i)

≤ z(j).
Important example for such sets are the p-efficient points of a
discrete distribution (introduced by [10]). If ξ = (ξ1, . . . , ξn) and
the support set of ξi is Zi = (zi0, . . . , ziki), i = 1, . . . , n, then we
create the Cartesian product Z = Z1×· · ·×Zn. Union of such events
can be written as:
N
i=1

Ai, where Ai = A(z(i)) = {x ∈ Rn
| x ≤ z(i)

},

i = 1, . . . ,N, (6)

where z(i)’s are the vertices of the orthants in Rn.
We derive the new formulas for the probability of (6) starting

from the bivariate case.

2. The bivariate case

For the sake of completeness we list some basic definitions in
connection with partially ordered sets (or poset, for short). Let two
elements x and y be in a poset. We say that x and y are comparable
if x ≤ y or y ≤ x. Otherwise x and y are incomparable. An element
M is maximal if M ≤ x → M = x and an element m is minimal if
x ≤ m → m = x. We say that y covers x, denoted x l y, if x < y
and no element between them.

Definition 1. A rank function r(·) of a poset P is function r : P →

{0} ∪ N having the following properties:

(i) if s is minimal, then r(s) = 0.
(ii) if t covers s (i.e., t m s), then r(t) = r(s) + 1.

Now, together with the presented basic terms regarding posets,
allow us to introduce a counting measure—reverse rank function ρ,
as follows.

Definition 2. On a finite poset P , with n maximal elements the
reverse rank function ρ : P → {1, . . . , n} is defined by:

ρ(E) =

n
i=1

1E⊆Mi ,

where E is any element of P andMi’s are the incomparablemaximal
elements of P .

Note that the reverse rank function ρ(E) can be used as a
countingmeasure, and it returns the number of maximal elements
containing E.

Example 1. Consider the following incomparable sets: A1 =

A((2, 10)), A2 = A((4, 7)), A3 = A((7, 5)), A4 = A((11, 1)). Their
intersections and the corresponding reverse rank function values
are as follows:

A1A2 = {x | x ≤ (2, 7)} ρ(A1A2) = 2
A1A3 = {x | x ≤ (2, 5)} ρ(A1A3) = 3
A1A4 = {x | x ≤ (2, 1)} ρ(A1A4) = 4
A2A3 = {x | x ≤ (4, 5)} ρ(A2A3) = 2
A2A4 = {x | x ≤ (4, 1)} ρ(A2A4) = 3
A3A4 = {x | x ≤ (7, 1)} ρ(A3A4) = 2
A1A2A3 = {x | x ≤ (2, 5)} ρ(A1A2A3) = 3
A1A2A4 = {x | x ≤ (2, 1)} ρ(A1A2A4) = 4
A1A3A4 = {x | x ≤ (2, 1)} ρ(A1A3A4) = 4
A2A3A4 = {x | x ≤ (4, 1)} ρ(A2A3A4) = 3
A1A2A3A4 = {x | x ≤ (2, 1)} ρ(A1A2A3A4) = 4.

(7)

Refer to Fig. 1 for two different ways of ordering: (a) by subset
relation and (b) by the reverse rank function and the inclusion. On
a poset with length n − 1 in R2 (i.e., every maximal chain has the
same length of n − 1) ordered by inclusion, we have the following
relations.

rank r(·) reverse rank ρ(·) group of elements
n − 1 1 maximal elements
n − 2 2 incomparable pairs
n − 3 3 incomparable triplets and some pairs

.

.

.
.
.
.

.

.

.

0 n minimal element and others.

(8)

From relation (8), if we remove all the current maximal
elements, then the elements in the reverse rank of 2 in (8) –
i.e., incomparable pairwise intersections –will be the newmaximal
elements. The new poset can be written as the following.

rank r(·) reverse rank ρ ′(·) group of elements
maximal elements (removed)

n − 2 1 incomparable pairs (new maximal)
n − 3 2 incomparable triplets and some pairs

.

.

.
.
.
.

.

.

.

0 n − 1 the minimal element and all others.

(9)

Subtracting component-wise (9) from (8), the reverse rank
becomes 1 (the second column values) for every anti-chain.
Equivalently, we have ρ−ρ ′

= 1 for all elements of the poset. This
means that every element in the entire poset is counted exactly
once by the operation. Incomparable pairwise intersections can
easily be found by:
Algorithm to enumerate incomparable pairs

Step 0. Sort n maximal points (x1, y1), . . . , (xn, yn) on their 1st
component such that x1 < · · · < xn. Then we have the
relation between components:

x1 < · · · < xn
y1 > · · · > yn.

(10)

Step 1. Then the n − 1 ‘‘incomparable’’ pairs are:

Zi = {z ∈ R2
| z ≤ (xi, yi+1)}, i = 1, . . . , n − 1,

which can be written up in the following form:

Z1 = A((x1, y2)), Z2 = A((x2, y3)), . . . , Zn−1

= A((xn−1, yn)). (11)

We are ready to introduce the following:

Theorem 1 (Modified Inclusion–Exclusion Formula for the Bivariate
Case). In any given probability space, on a finite poset in R2 with the
maximal elements Ai = A(s(i)) = {z ∈ R2

| z ≤ s(i)}, i = 1, . . . ,N,
sorted as in (10), we have the formula:

P


N
i=1

Ai


=

N
i=1

P(Ai) −

N−1
i=1

P(AiAi+1) = S1 − S ′

2, (12)

where S1 is the first binomial moment of the events A1, . . . , AN , and
S ′

2 is the sum of the probabilities of the ‘‘incomparable’’ pairwise
intersections.

Proof.

P


N
i=1

Ai


= P(A1) + P(A2Ā1) + P(A3Ā1Ā2) + · · ·

+ · · · + P(AkĀ1Ā2 . . . Ak−1) + · · · + P(AN Ā1Ā2 . . . AN−1)
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