
Operations Research Letters 45 (2017) 34–39

Contents lists available at ScienceDirect

Operations Research Letters

journal homepage: www.elsevier.com/locate/orl

BBPH: Using progressive hedging within branch and bound to solve
multi-stage stochastic mixed integer programs
Jason Barnett a, Jean-Paul Watson b, David L. Woodruff c,∗
a Department of Applied Mathematics, University of California Davis, Davis, CA 95616-8609, USA
b Discrete Math and Optimization Department, Sandia National Laboratories, Albuquerque, NM 87185, USA
c Graduate School of Management, University of California Davis, Davis, CA 95616-8609, USA

a r t i c l e i n f o

Article history:
Received 29 September 2016
Received in revised form
20 November 2016
Accepted 21 November 2016
Available online 27 November 2016

Keywords:
Stochastic programming
Progressive hedging
Branch and bound

a b s t r a c t

Progressive hedging, though an effective heuristic for solving stochastic mixed integer programs (SMIPs),
is not guaranteed to converge in this case. Here, we describe BBPH, a branch and bound algorithm that
uses PH at each node in the search tree such that, given sufficient time, itwill always converge to a globally
optimal solution. In addition to providing a theoretically convergent ‘‘wrapper’’ for PH applied to SMIPs,
computational results demonstrate that for some difficult problem instances branch and bound can find
improved solutions after exploring only a few nodes.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

Spurred by important potential applications, researchers have
recently devoted considerable energy to developing methods for
solving stochastic mixed integer programs (SMIPs). Progressive
hedging (PH), though an effective heuristic for SMIPs, is not guar-
anteed to converge in the integer case. Here, we propose BBPH, a
branch and bound (B&B) algorithm that uses PH at each node of the
search tree. Given sufficient time, BBPH will converge to a globally
optimal solution. Almost all PH innovations and applications de-
scribed in the literature can be embedded in this framework.

Originally proposed by Rockafellar and Wets [12], examples of
PH in the literature include [3,4,6,9,10].

Branch and bound for SMIPs is not new, of course. For
example, [1] proposes a scenario decomposition algorithm for
0–1 stochastic programs, a specific case of our intended general
problem class. The dual decomposition algorithm given in [2] uses
B&B for a two stage SMIP. A branch-and-fix algorithm for solving
multi-stage, stochastic, mixed 0–1 problems is described in [5].

What is new in this contribution is B&B for PH, which can be
applied to a broad class of multi-stage SMIPs. A general-purpose
software implementation is available as part of the PySP library
in the Pyomo software package (www.pyomo.org). Tests of the

∗ Corresponding author.
E-mail addresses: jpbarnett@math.ucdavis.edu (J. Barnett),

jwatson@sandia.gov (J.-P. Watson), dlwoodruff@ucdavis.edu (D.L. Woodruff).

algorithm and this implementation are described in Section 4.
Before describing those tests, we introduce in the remainder of this
section the optimization model formulation and the progressive
hedging algorithm for multi-stage SMIPs. Section 2 then describes
two small examples illustrating the need for branching in PH,
which are provided as formal motivation. Our BBPH branch and
bound algorithm is described along with a remark whose proof
demonstrates its correctness in Section 3.

1.1. A general SMIP optimization model

Let T be the number of decision stages for amulti-stage stochas-
tic program.Wewill use t ∈ 1, . . . , T to index stages, although de-
cision stages do not always correspond to time. To make abstract
statements about stochastic programming, we make use of a ran-
domvariable, whichmay be vector valued, ξ t , associatedwith each
decision stage t . When the stages correspond to time, we think of
the value(s), ξ t , during or at the end of, stage t−1 depending on the
application. Hence, we generally refer to ξ t only for stage 2, . . . , T .
Consequently, the decisions for the stage t are made once the ran-
dom variables for the stages up to and including t are known.

We use the symbol ξ⃗ t to refer to the realized values of all
random variables up to and including stage t . We refer to a full
realization of the uncertainty, i.e.,

ξ⃗ T
=

ξ t , t = 2, . . . , T


as a scenario. Often, problemdata is a function of ξ and the problem
data corresponding to a particular value of ξ is also referred to as a
scenario.

http://dx.doi.org/10.1016/j.orl.2016.11.006
0167-6377/© 2016 Elsevier B.V. All rights reserved.

http://dx.doi.org/10.1016/j.orl.2016.11.006
http://www.elsevier.com/locate/orl
http://www.elsevier.com/locate/orl
http://crossmark.crossref.org/dialog/?doi=10.1016/j.orl.2016.11.006&domain=pdf
http://www.pyomo.org
mailto:jpbarnett@math.ucdavis.edu
mailto:jwatson@sandia.gov
mailto:dlwoodruff@ucdavis.edu
http://dx.doi.org/10.1016/j.orl.2016.11.006


J. Barnett et al. / Operations Research Letters 45 (2017) 34–39 35

In abstract formulations, we use xt = (ut , yt) to, respectively,
represent the integer and real parts of the decision vector that
corresponds to stage t . We use the notation x⃗ t for 1 ≤ t ≤ T
to represent the decisions for all stages up to, and including, stage
t . We assume that there are functions of the decision variables
for the current stage, parameterized by the decisions and random
variable realizations known at the time of the decisions. The
functions return the objective function value corresponding to the
stage for feasible solutions and a very large number for infeasible
solutions. For the first stage we write f1(x1) and for subsequent
stages ft(xt; x⃗ t−1, ξ⃗ t). The function ft takes an argument the partial
vector corresponding to stage t and as parameters the solution for
previous stages and the realization of the random variables up to
stage t . These functions enable us to write the minimization of
expected value very succinctly as

min
x

f1

x1

+ E

T
t=2

ft

xt; x⃗ t−1, ξ⃗ t


(1)

subject to x(ξ) ∈ X(ξ), ξ ∈ Ξ , (2)

where x(ξ) = (u(ξ), y(ξ)) ∈ X(ξ) ⊂ Zk
≥0 × Rl.

In themulti-stage cases of interest to us, ξ =

ξ t
T
t=1 is defined

on a discrete probability space (Ξ , A, P ). Each scenario, ξ , has
probability πξ . We organize realizations, ξ , into a tree with the
property that scenarios with the same realization up to stage t
share a node at that stage. Consequently, ξ⃗ t refers also to a node
in the scenario tree. Let Gt be the set of all scenario tree nodes for
stage t and let Gt(ξ) be the node at time t for a particular scenario,
ξ . For a particular node D , let D−1 be the set of scenarios that
define the node.

In the presence of a scenario tree, non-anticipativity must be
enforced at each non-leaf node, so using the discrete scenario tree
notation, problem (1) becomes

min
x,x̂


ξ∈Ξ

πξ


f1(x1(ξ))+

T
t=2

ft

xt(ξ); x⃗ t−1, ξ⃗ t


(3)

s.t. x(ξ) ∈ Yξ , ξ ∈ Ξ (4)

xt(ξ)− x̂t(D) = 0, t = 1, . . . , T − 1, D ∈ Gt , ξ ∈ D−1.
(5)

We use the notation x(ξ) to emphasize that the decisions
can depend on the realizations of the random variables, while
constraints (5) use the auxiliary variable x̂ to assure that at every
node of the decision tree, the portion of the solution corresponding
that decision stage is the same. So while x depends on ξ , it
does so in a way that is non-anticipative. To put it another way:
looking only at expression (3), one might get the impression that
the optimization is allowed to be prescient and make use of
knowledge of the future in setting stage variable values since xt in
these expressions depends on the entire realization, ξ . However,
constraints (5) force the decisions to depend only on information
that would be available when they are made. Note that in this
formulation, there is one full decision vector x for each scenario.
The variables x̂ are often called system of vectors since they are tied
to the tree with partial vectors corresponding to each node of the
tree.

Sometimes this problem is written without the variable x̂ as
follows:

min
x


ξ∈Ξ

πξ


f1(x1(ξ))+

T
t=2

ft

xt(ξ); x⃗ t−1, ξ⃗ t


(6)

s.t. x(ξ) ∈ X(ξ), ξ ∈ Ξ (7)

xt(ξ)− x̄(Gt(ξ)) = 0, t = 1, . . . , T − 1, ξ ∈ Ξ (8)

where for each t = 1, . . . , T and each D ∈ Gt

x̄t(D) :=


ξ∈D−1

πξ xt(ξ)/


ξ∈D−1

πξ .

In other words: x̄ is a system of node-by-node averages. Unless
there are scenarios with zero probability, the formulation with x̄ is
equivalent to the formulationwith x̂, somost practical applications
we use the second form and remove any zero probability scenarios
in a pre-processing step.

1.2. The PH algorithm

In the context of the formulation specified above, we now
present the progressive hedging algorithm formulti-stage stochas-
tic mixed-integer programs:

Algorithm 1 The Progressive Hedging Algorithm for Multi-Stage
SMIPs

1. Initialization: Let ν ← 0 and wν(Gt(ξ)) ← 0, ∀ξ ∈ Ξ ,
∀t ∈ {1, . . . , T }. Compute for each ξ ∈ Ξ :

xν+1(ξ) ∈ argmin
x∈X(ξ)


ξ∈Ξ

πξ


f1(x1(ξ))+

T
t=2

ft

xt(ξ); x⃗ t−1, ξ⃗ t


.

2. Iteration Update: ν ← ν + 1.

3. Aggregation: Compute for each t ∈ {1, . . . , T − 1} and each
D ∈ Gt :

x̄tν(D)←

 
ξ̂∈D−1

πξ̂ x
t
ν(Gt(ξ))

 /

 
ξ̂∈D−1

πξ̂

 .

4. Weight Update: Compute for each t ∈ {1, . . . , T − 1} and each
ξ ∈ Ξ :

wν(Gt(ξ))← wν−1(Gt(ξ))+ ρ[xtν(G(ξ))− x̄tν(G
t(ξ))].

5. Decomposition: Compute for each ξ ∈ Ξ :

xν+1(ξ) ∈ argmin
x∈X(ξ)

f1(x1(ξ))+

T
t=2

ft

xt(ξ); x⃗ t−1, ξ⃗ t


+

T−1
t=1


⟨wt

ν(ξ), xt⟩ +
ρ

2
∥xt − x̄tν(ξ)∥2


.

6. Termination criterion: If the solutions at the tree nodes are
equal (up to a given tolerance ϵ) or the maximum iteration
count is reached, stop. Otherwise, return to step 2.

We refer to
ρ

2
∥xt − x̄tν(ξ)∥2

as the proximal term. Our implementation uses the L2 norm. We
refer to systems of weights w that satisfy
ξ∈Ξ

π(ξ)w(ξ) = 0

as qualified weights. When PH uses a single value of the parameter
ρ for all iterations, scenarios, and variables, we refer to the ρ as a
global ρ. If PH uses a constant vector ρ for all iterations, we refer
to the ρ as a variable-specific ρ. If ρ is allowed to change at any
iteration, we refer to the ρ as a dynamic ρ.



Download English Version:

https://daneshyari.com/en/article/5128453

Download Persian Version:

https://daneshyari.com/article/5128453

Daneshyari.com

https://daneshyari.com/en/article/5128453
https://daneshyari.com/article/5128453
https://daneshyari.com

