
Operations Research Letters 45 (2017) 53–59

Contents lists available at ScienceDirect

Operations Research Letters

journal homepage: www.elsevier.com/locate/orl

Protection of flows under targeted attacks
Jannik Matuschke a, S. Thomas McCormick b, Gianpaolo Oriolo c,∗, Britta Peis d,
Martin Skutella e

a TUM School of Management, Technische Universtität München, Germany
b Sauder School of Business, University of British Columbia, Canada
c Dipartimento di Ingegneria Civile e Ingegneria Informatica, Università di Roma ‘‘Tor Vergata’’, Italy
d Fakultät für Wirtschaftswissenschaften, RWTH Aachen, Germany
e Institut für Mathematik, Technische Universität Berlin, Germany

a r t i c l e i n f o

Article history:
Received 6 September 2016
Received in revised form
15 November 2016
Accepted 16 November 2016
Available online 5 December 2016

Keywords:
Robust optimization
Network interdiction
Network fortification
Network design

a b s t r a c t

Wepresent a new robust optimizationmodel for the problem ofmaximizing the amount of flow surviving
the attack of an interdictor. Given some path flow, our model allows the interdictor to specify the amount
of flow removed from each path individually. In contrast to previous models, for which no efficient
algorithms are known, the most important basic variants of our model can be solved in poly-time. We
also consider extensions where there is a budget to set the interdiction costs.

© 2016 Published by Elsevier B.V.

1. Introduction

Network flow problems form one of the most important classes
of optimization problems with numerous real-world applications,
e.g., in production systems, logistics, and communication net-
works. The increasing dependence of our society on constant avail-
ability of such network services motivates the study of new flow
models that are robust against unforeseen interferences, link fail-
ures, and targeted attacks by external forces.

The theory of robust optimization offers various techniques
to handle the issue of planning in face of uncertainties and
unreliability; see, e.g., [3,4] for surveys. A general idea is to model
uncertainty by a set of possible scenarios Ω that is specified
along with the instance of the optimization problem under
consideration, where each scenario represents a possible outcome
involving failures in the infrastructure, intentional sabotage, or
similar complications. With respect to a worst-case analysis, the
robust objective value of a feasible solution x is the worst objective
value of x among all possible scenarios z ∈ Ω .
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Robust optimization can thus be interpreted as a two-
player game: the first player (‘‘the decision-maker’’) chooses a
solution x from a set X of feasible solutions to the underlying
‘‘nominal’’ optimization problem. Afterwards, the second player
(‘‘the adversary’’ or ‘‘interdictor’’) selects a scenario z from
the predefined scenario set Ω . While the first player aims at
maximizing the resulting objective value val(x, z), the adversary
selects z ∈ Ω in order to reduce val(x, z) as far as possible. The
robust optimization problem therefore asks for an optimal x ∈ X
solving

max
x∈X

min
z∈Ω

val(x, z).

In this paper, we present a new robust optimization model
for network flows. In existing models the interdictor acts on a
subset of the arcs of the network and the interdiction of an arc
affects all flow on that arc equally. By contrast, our model allows
the interdictor to specify the amount of flow removed from each
flow path individually (we therefore deal with flows on paths).
In this context, it might be helpful to think of the interdictor
as a thief who steals particular flow units of his choice: As an
illustrative example, consider a train network in which each flow
path represents a train and train robbers try to remove as much
cargo as possible from the trains, attacking each train at the most
vulnerable station it traverses (possibly sparing other trains that go
through the same station). Besides providing this new perspective

http://dx.doi.org/10.1016/j.orl.2016.11.005
0167-6377/© 2016 Published by Elsevier B.V.

http://dx.doi.org/10.1016/j.orl.2016.11.005
http://www.elsevier.com/locate/orl
http://www.elsevier.com/locate/orl
http://crossmark.crossref.org/dialog/?doi=10.1016/j.orl.2016.11.005&domain=pdf
mailto:jannik.matuschke@tum.de
mailto:tom.mccormick@sauder.ubc.ca
mailto:oriolo@disp.uniroma2.it
mailto:peis@oms.rwth-aachen.de
mailto:martin.skutella@tu-berlin.de
http://dx.doi.org/10.1016/j.orl.2016.11.005


54 J. Matuschke et al. / Operations Research Letters 45 (2017) 53–59

of robust flow optimization, the newmodel has the advantage that
optimal robust flows can be computed in polynomial time. We
also consider further variants of the problem, in which the flow
player can adjust the protection for the flow he sends through
the network on each arc, subject to a budget. While we focus our
discussion throughout this paper mainly on the classic maximum
flow problem, we also point out that our results directly extend to
robust optimization versions of a general class of packing problems
that extends beyond network flows.
Contribution and structure of the paper. In the remainder of this
section, we present our new robust flow model and compare it to
existing models. We also discuss literature on the closely related
field of network interdiction.

In Section 2, we study the basic version of our new robust flow
model, in which interdiction costs for the arcs of the network
are given and the flow player determines a path flow with the
goal of maximizing the surviving flow value after interdiction. We
show that the optimal strategy for the flow player can be found
by solving a parametric LP, where the parameter corresponds to
the cost of the most expensive arc affected by the interdictor. We
also show that in general, optimal solutions to our problem are
not integral, and that any combinatorial algorithm for our problem
can also be used to solve a feasibility version of the (fractional)
multicommodity flow problem combinatorially. Finally, we point
out that our results still hold when the flow player’s options are
limited by a budget, and further extend to a very general class
of packing problems, including multicommodity flows, abstract
flows, and b-matchings.

In Section 3, we study a design variant of the problem, where
the flow player has to buy the protection of the flow he sends
through the network subject to a limited budget. For each arc, the
cost of protection is proportional to the chosen interdiction cost
on that arc and the amount of flow that needs to be protected. We
show that this seemingly hard non-linear optimization problem
can be solved by exploiting insights on the structure of an optimal
solution.

In Section 4, we discuss a generalization of the problem from
the preceding section, in which an initial (free) protection of the
flow on each arc is given but the interdiction costs can be further
increased by the flowplayer subject to his budget.We show, that in
contrast to the problems discussed earlier, this problem is not only
NP-hard but does not even allow for approximation algorithms.

1.1. The new model

Weare given a directed graphD = (V , A)with source s ∈ V and
sink t ∈ V , and arc capacities u ∈ ZA

+
. We consider flows on paths,

as in [6, Section 4]. LetP denote the collection of all s–t-paths inD.
The strategy choices of the decision maker (whomwe call the flow
player) are given by the set

X :=


x ∈ RP

+
|


P∈P :e∈P

xP ≤ ue ∀e ∈ A


of all feasible s–t-flows in the capacitated network (D, u), i.e.,
the flow player specifies the amount of flow along each s–t-path
subject to the arc capacities.

Classic robust flowmodels (which are discussed further below)
are built on the assumption that the interdictor attacks arcs of
the network subject to a budget, equally affecting all flow paths
traversing the interdicted arcs. In contrast, in ourmodelwe instead
think of the interdictor as a thief who might directly attack and
steal flow on each individual path rather than manipulating an arc
e as a whole. Each arc e ∈ A is equipped with an interdiction cost
ce ≥ 0, specifying the cost of stealing one unit of flow on that arc.
The interdictor can, after the flow player has chosen a flow x ∈ X ,

use a given budget BI in order to steal flow on some of the paths.
Therefore the interdictor chooses a scenario/strategy

z ∈ Ω :=


z ∈ RA×P

+
|


e∈A

ce


P∈P :e∈P

ze,P ≤ BI


.

The remaining flow after applying the interdiction strategy z to
flow x is defined by x̄P := (xP −


e∈P ze,P)

+ for each P ∈

P . The flow player’s goal is to maximize val(x, z) :=


P∈P x̄P ,
anticipating the interdictor’s response, whowants tominimize the
same quantity, i.e., steal as much flow as possible.

Note that an attack on a particular path P ∈ P should always
happen on a cheapest arc e ∈ P . Therefore, after the flow x ∈ X has
been chosen, an optimal strategy for the interdictor is the following
greedy approach: Sort the paths P ∈ P in order of non-decreasing
bottleneck cost c̄P := mine∈P ce and steal flow along the paths in
this order until the budget BI has been used up.

This tractability of the interdictor’s optimal strategy is a
desirable property of our model as it allows computation of
the robust value of any given flow. Note that, in contrast, for
the models in [6,19] discussed below, the interdictor’s optimal
answer to a given flow is NP-hard to compute (in both cases,
the interdictor’s problem is equivalent to the budgeted maximum
coverage problem [6]).

Also, with the exception of the basic model in [2], no efficient
algorithm or constant factor approximation is known for the
flow player’s problem in the robust flow models discussed below
despite intense research.Wewill show that for ourmodel, both the
maximum flow version as well as the design version (in which the
flow player adjusts the protection of the links in the network) can
be solved efficiently. Furthermore, our model and these positive
algorithmic results naturally extend to a very general class of
packing linear programs, including, e.g., multicommodity flows,
abstract flows, and b-matchings, and allows the easy integration
of additional budget constraints.

1.2. Related work

In the following,we discuss existing robust flowmodels and the
related concept of network interdiction.
Robust flows. Robust flows subject to cost uncertainties were
studied by Bertsimas and Sim [7]. Aneja et al. [2] started the study
of robust maximum (path) flows in presence of an interdictor
(capacity uncertainty), who in their model could remove a single
arc from the network. The goal of the flow player, as in all
subsequent papers, is to maximize the value of the surviving flow.
Aneja et al. showed that the problem can be solved in polynomial
time using a parametric LP. Du and Chandrasekaran [12] showed
that, as soon as the interdictor is allowed to remove two arcs,
the corresponding dual separation problem becomes NP-hard:
However, as pointed out in [11], this does not imply that the
robust flow problem itself is NP-hard. While the complexity of the
problemwith two arcs is open, it is shown in [11] that the problem
is NP-hard when the number of arcs that the interdictor is allowed
to remove is not bounded by a constant. On the positive side,
Bertsimas et al. [6] building upon a generalization of the parametric
LP used in [2], gave an LP-based approximation, in terms of the
amount of flow removed by the interdictor in an optimal solution,
for the case where the interdictor can remove any given number
of arcs BI . More recently, Bertsimas et al. [5] showed that the same
flow also yields a 1 + (BI/2)2/(BI + 1)-approximation. Formally,
the model in [6,2,12,5] is defined for the uncertainty set Ω = {z ∈

{0, 1}A | 1T z ≤ BI} and the problem that has to be solved by
the flow player is maxx∈X minz∈Ω val(x, z), where val(x, z) is the
amount of flow x ∈ X that survives after the interdictor selects
the scenario z ∈ Ω , i.e., val(x, z) =


P∈P (1 − maxe∈P ze)xP . A

fractional version of this uncertainty set was proposed in [8]. Each
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