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a b s t r a c t

We propose truthful approximation mechanisms for strategic variants of the generalized assignment
problem (GAP) in a payment-free environment. In GAP, a set of items has to be optimally assigned to
a set of bins without exceeding the capacity of any singular bin. In our strategic variant, bins are held by
strategic agents and each agent may hide its willingness to receive some items in order to obtain items of
higher values. The model has applications in auctions with budgeted bidders.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

Truthful mechanism design without money under general
preferences is a classic topic in social choice theory. Truthfulness
ensures that no agent can be better off by manipulating its true
preferences. When searching for truthful mechanisms without
money, one has to look at restricted domains of preferences. The
reason for this, is the Gibbard–Satterthwaite theoremwhich states
that any truthful social choice function which selects an outcome
among three or more alternatives has to be trivially aligned with
the preference of a single agent (namely, the dictator) [7,11]. Thus,
exploring domains for which there exist truthful mechanisms is of
central importance in the field of social choice theory.

As an example for restricted domains, consider agents with
single-peaked preferences. In this domain returning the median
of the peaks determines a truthful social choice [8]. Another
example is the two-sided matching, in which a set of men has a
strict preference ordering over a set of women, and vice versa.
A matching is an assignment of men to women where each side
is assigned to only one element of the other side. The deferred
acceptance algorithm finds a stable matching which is truthful for
the proposing side, but not necessarily truthful for the other side
[10].
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One way to circumvent the impossibility result is relaxing
the social choice function. Procaccia and Tennenholtz introduced
the technique of welfare approximation as a means to derive
truthful approximation mechanisms without money [9]. This
type of approximation is not meant to handle computational
intractability, but a method to achieve truthfulness by relaxing the
goal of optimizing social welfare (approximating social welfare),
and thus circumventing the Gibbard–Satterthwaite impossibility
theorem. The approach is tomaximizewelfarewithout considering
incentives, and refer to this as optimal value. Then it is said that a
truthful mechanism returns (at most) an α-approximation of the
optimal if its value is always greater than or equal to 1/α times the
optimal value (α ≥ 1). Several works, subsequent to the work of
Procaccia and Tennenholtz, employ this technique [4,3]. We apply
this technique to a novel strategic setting in the following.

1.1. Model

Consider a strategic variant of the generalized assignment
problem termed GAP-BS in an environment which is both prior-
free and payment-free. In GAP-BS, there are m items J and n bins
(knapsacks) I . Each bin i has a capacity Ci and associates a value
vij and a size wij to any item j. A feasible assignment may allocate
a subset of items S to bin i such that


j∈S wij ≤ Ci. A feasible

assignment may assign each item at most once.
In GAP-BS, we assume tuple T = ({vij}ij, {wij}ij, {Ci}i) is public,

but each bin is held by a strategic agent. The private information
that each agent/bin holds is the set of its compatible items.
The compatibility between an agent and an item encodes the
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willingness of the agent to receive the item. In particular, consider
a bipartite graph G where one side corresponds to items and
the other side corresponds to bins. The edges of G, E ⊆ I × J
represent the compatible item–bin pairs. The private type of a bin
i is therefore the set of edges in the graph incident on i, i.e. Ei.
A bin i receives value vi(S) =


j∈S:(i,j)∈Ei

vij from package S if
j∈S wij < Ci and 0, otherwise. The total value of a feasible

assignment (S1, S2, . . . , Sn) equals the sum of values received by
the bins from the assignment:


i∈I vi(Si). We seek a total value-

maximizing algorithm that provides each bin i with incentives to
truthfully report its compatible items Ei rather than any E ′

i ⊂ Ei.
In fact, our results certify that each bin i reports exactly Ei, and
has no incentives to report any other set of edges E ′

i . However, for
the sake of simplicity in the exposition of the results, we focus on
untruthful reports that are made by hiding some edges, E ′

i ⊂ Ei. In
other words, given a truthfulmechanism, bins have no incentive to
hide their compatibility with some items.

Let A denote a randomized algorithm which takes instance
(T , E) and computes X ∈ {0, 1}E , an assignment of items to
bins. Algorithm A is internally randomized; it returns a solution
which is randomly chosen according to a lottery over feasible
assignments. Thus, the computed assignment may change by
running A, twice on the same input. Randomized algorithm A,
given any tuple T , should satisfy the following properties.

i. (feasibility) ∀j ∈ J, Pr[


i∈I Xij ≤ 1] = 1 and ∀i ∈

I, Pr[


j∈J wijXij ≤ Ci] = 1, where X ∼ A(T , E), for all E.
ii. (incentive compatibility) for all i, Ei, E−i, and any reported E ′

i ⊂

Ei, we have E[


j:(i,j)∈Ei
vijXij] ≥ E[


j:(i,j)∈Ei

vijX ′

ij], where X ∼

A(T , E), and X ′
∼ A(T , E ′

i ∪ E−i).

E−i always denotes E \ Ei. The expectation in ii is taken over
the coin flips of the algorithm. Note that, the expected value of
the bin in both cases is calculated with respect to true item–bin
compatibilities, E. We remark that condition ii characterizes
mechanisms that are dominant strategy incentive compatible. In
this paper, for brevity, we refer to these mechanisms as truthful
mechanisms or algorithms. To sum, our objective is to propose
a randomized algorithm A for GAP-BS which is truthful, and
always returns a feasible assignment whose value approximates
the optimal total value as high as possible.

Many real-world decision problems can bemodeled by variants
of knapsack problems, therefore we believe that our model can be
applied broadly. As an example, we refer to themaximum budgeted
allocations (MBA) problem [2]. In MBA, a set of indivisible items
has to be assigned to a set of bidders. Each bidder i reports her
willingness to pay bij for item j by bidding for the item, while she
has a budget constraint Bi. Each bidder i on receiving a package
S of items, pays


j∈S bij. Each bidder i has the rigid constraint

Bi on her payment. The goal in MBA is to find a distribution of
items among the bidders which maximizes the total revenue (the
sum of the payments by the bidders while respecting their budget
constraints). MBA arises in auctionswith budgeted bidders and has
several applications [2].

In MBA, bidders want to get as much as they can without
spending more than their budget. For instance, advertisers wish
to maximize the impressions, clicks, or sales generated by their
advertising, subject to budget constraints. Similarly, bidders who
have no direct utility for leftover money (e.g. because the money
comes from a corporate budget) will buy as much as possible. This
types of bidders are called value maximizers, and have recently
drawn the attention of researchers in mechanism design [5].

Consider a strategic variant of MBA in which each bidder, in
order to obtain amore valuable package of items, strategizes in the
following way. Each bidder may strategically hide her interests in
buying some items by not bidding for those items. In this setting,
the auctioneer wishes to certify that each bidder truthfully reveals

her willingness to buy items. In other words, a truthful mechanism
in this setting will encourage participation of the bidders in the
auction. We model this setting by GAP-BS in which each bidder is
represented by a bin, budgets Bi by capacities Ci, the bids bij by the
values of bins for the items vij, and the payment by a bidder i for
item j by the weight of the item on the bin, wij. Thus, in this setting
of GAP-BS, we have vij = wij for all i and j. For this problem, since
the value density of each item is the same over all bins, we provide
a truthful 4-approximation algorithm.

1.2. Discussion about the assumptions

Aside from the applications of the model discussed above, we
emphasize that our assumptions (which imply a highly structured
domain) are necessary to escape the impossibility results such
as the Gibbard–Satterthwaite theorem and its variations. For
example, we resort to welfare approximations because as stated
by Theorem 1, no deterministic (or randomized) algorithm whose
value is optimal, exists for GAP-BS. The lower bounds in Theorem 1
were derived for a different setting with strategic items in the
literature, however, we can reproduce and adapt the theorem for
our setting.

Theorem 1 ([4]). No truthful deterministic algorithm with an
approximation ratio better than 2 exists for GAP-BS. Moreover, no
truthful-in-expectation randomized algorithmwith an approximation
ratio better than 1.09 exists for GAP-BS.

Now, we consider a setting in which bins/agents have private
values for items. This setting is more general than GAP-BS in that,
in this setting, the agents canmanipulate their valuations for items.
This is in contrast to GAP-BS inwhich the agents can only hide their
valuations for some items by hiding their compatibility with those
items. For this general setting, no deterministic (or randomized)
truthful algorithm, with an interesting approximation ratio, exists.
To see this, consider a simple market with one item, and a set
of agents. This market is equivalent to the single-item auction,
but without money. We observe that no mechanism without
money can find the (true) highest valuation for the item, as the
agents can report arbitrarily high values for the item. That is,
no truthful algorithm can do anything better than the algorithm
which allocates the item to the bin which is uniformly chosen at
random. Such an algorithm provides a trivial approximation ratio
of 1/n, n being the number of agents.

In a parallel setting, Dughmi et al. [4] and Chen et al. [3] studied
GAP in an environment in which items are held by strategic agents.
This is in contrast to our assumption that bins are held by strategic
agents. Hence, the solutions proposed by these authors are not
directly applicable to GAP-BS. In GAP each item can be assigned
only once, thus the setting studied by Dughmi et al. is appropriate
for modeling single-demand bidders who are interested in buying
only a single item. However, our model analyzes strategic bins
which can model multi-demand bidders, i.e., bidders who are
interested in buying multiple items. In particular, the sizes in our
model are at the side of strategic agentswhich properlymodels the
bidders’ budgets in MBA problem.

2. Truthful mechanisms for GAP-BS and variants

In addition to GAP-BS, we also analyze two variants, namely the
multiple knapsack problem in which each item has the same size
and value over bins, and density-invariant GAP in which each item
has the same value density (value per size) over the bins. For an
extended version of the paper, we refer the reader to Fadaei and
Bichler [6].

We observe that the relaxation and rounding technique
is applicable to these problems. The relaxation and rounding



Download English Version:

https://daneshyari.com/en/article/5128460

Download Persian Version:

https://daneshyari.com/article/5128460

Daneshyari.com

https://daneshyari.com/en/article/5128460
https://daneshyari.com/article/5128460
https://daneshyari.com

