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a b s t r a c t

We study the impact of suboptimal decisions in the newsvendor model, one of the popular inventory
models. We establish a lower bound for the deviation of inventory cost from its minimum, when the
order quantity is suboptimal. Demonstration of the bound shows the model to be sensitive to suboptimal
decisions.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

The newsvendor problem is about stocking decision of a prod-
uct with uncertain demand, where mismatch between demand
and supply attracts penalty. This classic inventory problem was
first addressed by Arrow et al. [1]. Owing to its wide applicabil-
ity, the newsvendor problem attracted attentions of many schol-
ars over the past six decades. Review of their works can be found
in Khouja [8], Qin et al. [11], and Choi [3].

Simplest case of the newsvendor problem, known as the clas-
sical newsvendor problem, arises when we make certain simpli-
fying assumptions about the demand and supply processes. Key
assumptions are: (i) exogenous demand with known distribution,
(ii) single procurement of any amount, and (iii) linearity of cost
components. See Chapter 10 of Silver et al. [12] for the details. Let
X denote the stochastic demand with distribution function F . Let
co and cu denote the unit over-stocking and under-stocking costs.
Let Q denote the order quantity. Then demand–supply mismatch
cost, C(Q , X) and its expected value are given by

C(Q , X) = co max{0,Q − X} + cu max{0, X − Q }

E[C(Q )] =

 Q

−∞

co(Q − x)dF(x) +


∞

Q
cu(x − Q )dF(x)

= (co + cu)

ξ(µ − Q ) +

 Q

−∞

F(x)dx


(1)

where ξ = cu/(co + cu) is referred to as the critical fractile andµ is
themean demand. E[C(Q )] is convex inQ and the optimal solution
is given by: F(Q ∗) = ξ .
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Decision making in the classical newsvendor model requires
the knowledge of demand distribution and cost parameters. When
estimates of these parameters deviate from their true values, the
actual decision (derived using the estimates) deviates from the op-
timum (calculated using the true values). Due to convex nature of
the objective function, any deviation from the optimal decision in-
creases cost. In this context, sensitivity analysis is performed to un-
derstand the impacts of (i) suboptimal decisions on expected cost
and (ii) parameter estimation error on stocking decision. It shall
be noted that the second question is of practical relevance when
the impact of suboptimal decisions on expected cost is significant.
Some of the popular inventory models, e.g., economic order quan-
tity (EOQ), stochastic (r,Q ), and stochastic (s, S)models have been
found to be insensitive to suboptimal decisions [10,14,2]. In this
sense, we should investigate question-(i) first.

In the newsvendor literature, there are some papers (e.g., [5,4,
9,13]) that, to some extent, address question-(ii), i.e., the impact
of parameter estimation error on stocking decision. However,
question-(i), which is our focus, remains largely unanswered with
the exception of one paper. In a recent article, Khanra et al. [7]
established a lower bound for cost deviation, i.e., the deviation
of expected cost from its minimum value. Demonstration of the
lower bound showed the newsvendor model to be sensitive to
suboptimal decisions. In a number of scenarios, cost deviation
exceeded order quantity deviation, i.e., the deviation of order
quantity from its optimal value. This behaviour of the newsvendor
model is opposite to that of the EOQ, (r,Q ), and (s, S) models.

Khanra et al. [7] assumed the demand to follow symmetric
unimodal distribution. In this paper, we study robustness of the
newsvendor model to suboptimal decisions when the demand
distribution is not necessarily symmetric. In particular, we
establish a new lower bound for cost deviation when the demand
follows general unimodal distribution. Demonstration of the
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(a) θ ≠ m. (b) θ = m.

Fig. 1. G ∈ UDa,b,c,θ .

lower bound establishes sensitivity of the newsvendor model to
suboptimal decisions.

2. New lower bound for cost deviation

We need to decide measures for cost and order quantity devia-
tions. We choose relative measure, i.e., cost deviation is measured
by δC = (E[C(Q )] − E[C(Q ∗)])/E[C(Q ∗)], and order quantity de-
viation is measured by δQ = (Q − Q ∗)/Q ∗. These measures are
unit-less fractions, hence, easy to compare. Using (1), we can ex-
press δC as a function of δQ as follows.

δC (δQ ) =

 Q∗(1+δQ )

Q∗ {F(x) − ξ}dx

ξ(µ − Q ∗) +
 Q∗

−∞
F(x)dx

. (2)

Let us adjust the unit of cost so that co + cu = 1. Then the
numerator of δC (δQ ) in (2) is the absolute deviation of cost, denoted
by ∆C (δQ ), and the denominator is the minimum mismatch cost,
E[C(Q ∗)]. We establish the lower bound for δC (δQ ) by combining a
lower bound of ∆C (δQ ) and an upper bound of E[C(Q ∗)]. To obtain
these bounds for unimodal demand, first we need to characterize
such distributions.

2.1. Unimodal demand distributions

We call a distribution F to be unimodal if there exists c ∈ R
such that F is convex in (−∞, c] and concave in [c, ∞) [6]. Since
we are dealing with demand distributions, we can safely assume a
bounded support for the distribution. Let us denote the family of
unimodal distributions with support [a, b], mode c , and F(c) = θ
by UDa,b,c,θ . Let r = a/b denote ratio of the demand limits and
m = (c−a)/(b−a) denote location of themode. Non-negativity of
demand ensures a ≥ 0.We assume a < c < b and strictmonotony
of F in [a, b]. Then r ∈ [0, 1), m ∈ (0, 1), and θ ∈ (0, 1). Note that
every unimodal demand distribution can be ‘‘covered’’ by varying
r ,m, and θ in their respective ranges. Similarly, every cost structure
(i.e., co and cu values) can be covered, if we vary ξ in (0, 1).

In order to derive a lower bound for δC (δQ ), first we need to
bound F itself. Given a, b, c , and θ , let us define G ∈ UDa,b,c,θ as
follows.

G(x) =


x − a
c − a

θ if x ∈ [a, c)

1 −
b − x
b − c

(1 − θ) if x ∈ [c, b].
(3)

See Fig. 1 for a graphical depiction of G. When θ = m, G becomes
the uniform distribution in [a, b]. We use Q ∗

G to denote the optimal
order quantity when the demand distribution is G. Then EG[C(Q ∗

G )]

denotes the minimum mismatch cost when G is the demand
distribution. Using G, Lemma 1 offers a partial bound for every
F ∈ UDa,b,c,θ .

Lemma 1. F(x) ≤ G(x) if x < c and F(x) ≥ G(x) if x ≥ c for every
F ∈ UDa,b,c,θ .

Proof. We need to focus only on x ∈ (a, b) as G(x) = F(x) =

0 ∀x ≤ a and G(x) = F(x) = 1 ∀x ≥ b. Due to convexity of F in
[a, c], F(λa + (1 − λ)c) ≤ λF(a) + (1 − λ)F(c) = (1 − λ)θ ∀λ ∈

(0, 1). Replacing λa + (1 − λ)c by x, F(x) ≤ {(x − a)/(c −

a)}θ = G(x) ∀x ∈ (a, c). Similarly, due to concavity of F in [c, b],
F(λc+(1−λ)b) ≥ λF(c)+(1−λ)F(b) = 1−λ(1−θ) ∀λ ∈ [0, 1).
Replacing λc+(1−λ)b by x, F(x) ≥ 1−{(b−x)/(b−c)}(1−θ) =

G(x) ∀x ∈ [c, b). �

Lemma 1 has the following consequence for Q ∗, the optimal
decision for F .

Corollary 1. Q ∗
≥ Q ∗

G if ξ < θ and Q ∗
≤ Q ∗

G if ξ ≥ θ for every
F ∈ UDa,b,c,θ .

Proof. If ξ < θ , Q ∗ < c. Then by Lemma 1, F(Q ∗) ≤ G(Q ∗).
If, by contradiction, Q ∗ < Q ∗

G for some ξ < θ , ξ = F(Q ∗) ≤

G(Q ∗) < G(Q ∗

G ) = ξ , which is impossible. The strict inequality is
due to strict monotony of G in [a, b]. Hence, Q ∗

≥ Q ∗

G if ξ < θ .
Similarly, if ξ ≥ θ , Q ∗

G ≥ c. Then by Lemma 1, F(Q ∗

G ) ≥ G(Q ∗

G ).
Again, by contradiction, if Q ∗ > Q ∗

G for some ξ ≥ θ , ξ = G(Q ∗

G ) ≤

F(Q ∗

G ) < F(Q ∗) = ξ , which is impossible. The strict inequality is
due to strict monotony of F in [a, b], which we assumed earlier.
Hence, Q ∗

≤ Q ∗

G if ξ ≥ θ . �

Lemma 1 and Corollary 1 are useful in establishing the lower
bound for δC (δQ ).

2.2. Lower bound for the numerator

Let us assume that the suboptimal decision, Q ∈ [a, b]. If a′

and b′ denote the observed lowest and highest demand, then the
newsvendor is unlikely to order a quantity that is outside [a′, b′

].
Since [a′, b′

] ⊆ [a, b], we can assume that Q ∈ [a, b].
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