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a b s t r a c t

In this paper, we investigate the stochastic comparison of parallel systems with two independent
exponential components in terms of mean-residual (MRL) ordering. We obtain a more general and
reasonable sufficient condition for guaranteeing MRL ordering of the systems than the one given in some
existing results in the literature.
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1. Introduction

Stochastic comparison of order statistics has many applications
and this topic has a long history. See Proschan and Sethuraman [7],
Kochar and Rojo [3], Dykstra et al. [2], Kochar and Xu [4], Zhao
and Balakrishnan [9], and some recent nice review articles, such
as, Balakrishnan and Zhao [1]. As we all know, order statistics is
closely related with the lifetimes of k-out-of-n systems. Typically,
the largest order statistic corresponds to the lifetime of parallel
system.

As we can notice, the exponential models are the most com-
monly used ones among the lifetimemodels; the exponential vari-
ables are the special cases of some other variables; and, by some
increasing transformations, exponential variables can be con-
verted to some other variables, such as, the Weibull variables. For
these reasons, in this paper, we confine the investigation in expo-
nential settings.

Let X1, . . . , Xn be independent exponential random variables
with Xi having hazard rate λi, i = 1, . . . , n, and Y1, . . . , Yn be
another set of independent exponential random variables with Yi
having hazard rate µi, i = 1, . . . , n. Denote Xn:n = max{X1, . . . ,
Xn}, and Yn:n = max{Y1, . . . , Yn}. By symmetry, throughout this pa-
per, we assume λ1 ≤ · · · ≤ λn andµ1 ≤ · · · ≤ µn, and also denote
Xn:n as T (λ1, . . . , λn), Yn:n as T (µ1, . . . , µn) for explicitness.

Denote
m
≻ as majorization order,

rm
≻ as reciprocal majorization

order, ≥st as the usual stochastic order, and ≥mrl as mean-
residual (MRL) order. So far, many results have been established
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on stochastic orderings between Xn:n and Yn:n. For example, Pledger
and Proschan [6] showed that (λ1, . . . , λn)

m
≻ (µ1, . . . , µn)

implies Xn:n ≥st Yn:n, Dykstra et al. [2] enhanced the above result
to reversed hazard rate order, and Misra [5] extended the result
to weak majorization order. For n = 2, Zhao and Balakrishnan [9]
showed that, under the condition 0 < λ1 ≤ µ1 ≤ µ2 ≤ λ2,

(λ1, λ2)
rm
≻ (µ1, µ2) =⇒ X2:2 ≥mrl Y2:2. (1)

As we know, smaller hazard rate implies longer lifetime, or,
better quality of component. By intuition, when µ2 ≥ λ2, the
result X2:2 ≥mrl Y2:2 is more likely to be true. As we can easily
confirm, T (1, 2) ≥mrl T (2, 3). We thus believe that the condition
0 < λ1 ≤ µ1 ≤ µ2 ≤ λ2 is too stringent and is not so necessary in
guaranteeing X2:2 ≥mrl Y2:2.

As we can easily prove, T (λ, λ)≥mrl(µ1, µ2) when µ2 ≥ µ1 ≥

λ. So, in the sequel, we assume 0 < λ1 < λ2. For a point (λ1, λ2)
with 0 < λ1 < λ2, we define a region Γ(λ1,λ2). A point (x, y) ∈

Γ(λ1,λ2), if 0 < x ≤ y, 1
y −

1
x ≤

1
λ2

−
1
λ1
, and 1

y +
1
x ≤

1
λ2

+
1
λ1
. In

other words, Γ(λ1,λ2) is the inside part enclosed by the line y = x,
the curve 1

y −
1
x =

1
λ2

−
1
λ1
, and the curve 1

y +
1
x =

1
λ2

+
1
λ1
.

Separate the regionΓ(λ1,λ2) into three parts. Part I is bounded by
line y = λ2, the line y = x, and the curve 1

y +
1
x =

1
λ2

+
1
λ1
; part II is

bounded by the lines y− x = λ2 −λ1, y = λ2 and, y = x; part III is
bounded by the line y−x = λ2−λ1, and the curve 1

y −
1
x =

1
λ2

−
1
λ1
.

The following picture shows the region Γ(λ1,λ2). See Fig. 1.
In this paper, we prove

(µ1, µ2) ∈ Γ(λ1,λ2) =⇒ X2:2 ≥mrl Y2:2. (2)
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Fig. 1. Region Γ(λ1,λ2) .

As we can see, the result (1) states that, when (µ1, µ2) is in the
part I ofΓ(λ1,λ2), X2:2 ≥mrl Y2:2. Clearly, the result (2) is an extension
of result (1). Since the result (2) does not require µ2 ≤ λ2, we
believe the condition (µ1, µ2) ∈ Γ(λ1,λ2) is a more reasonable
sufficient condition for guaranteeing the MRL ordering between
X2:2 and Y2:2. For our convenience, we say (λ1, λ2) is g-larger than
(µ1, µ2) (denote as (λ1, λ2)

g
≻ (µ1, µ2)), if (µ1, µ2) ∈ Γ(λ1,λ2).

The paper is organized as follows. In Section 2, we give the
required notations and definitions. Section 3 provides the proof of
the result. The proof of a lemma is deferred to Appendix.

2. Notations and definitions

Let X be a nonnegative continuous random variable with
distribution function FX (t), survival function F̄X (t) = 1 − FX (t),
and density function fX (t). The reversed hazard function of X is
defined as rX = fX/FX . For two random variables X and Y , we say X
is larger than Y in the usual stochastic order (denoted by X ≥st Y ),
if F̄X (t) ≥ F̄Y (t); X is larger than Y in reversed hazard rate order
(denoted by X ≥rh Y ), if rX (t) ≥ rY (t); and X is larger than Y inMRL
order (denoted by X ≥mrl Y ), if E(X − t|X > t) ≥ E(Y − t|Y > t).

Given twovectorsa = (a1, a2, . . . , an) andb = (b1, b2, . . . , bn)
with increasing elements, the vector a is said to majorize the vec-
tor b (denoted as a

m
≻ b) if,

n
i=1 ai =

n
i=1 bi, and

k
i=1 ai ≤k

i=1 bi, for k = 1, . . . , n − 1. The vector a is said to reciprocal

majorize b (denoted as a
rm
≻ b), if

j
i=1 1/ai ≥

j
i=1 1/bi, j =

1, . . . , n. For more details on stochastic orders, see Shaked and
Shanthikumar [8].

For our convenience, we denote A
sgn
= B if the signs of A and B

are the same. The following lemma will be used in the proof of the
main result.

Lemma 2.1. Let c(x) = (ex − 1)/x. Then, for any x, y > 0, c(y) −

(y − x)c(x) > 0.

3. Main result

Theorem 3.1. Given a point (λ1, λ2) with 0 < λ1 < λ2, we have,

(λ1, λ2)
g
≻ (µ1, µ2) =⇒ T (λ1, λ2) ≥mrl T (µ1, µ2).

Proof. Let X = T (λ1, λ2) = max{X1, X2}, where Xi follows
exponential distribution with hazard rate λi, i = 1, 2, The MRL

function of X is

φ(λ : t) =

1
λ1
e−λ1t +

1
λ2
e−λ2t −

1
λ1+λ2

e−(λ1+λ2)t

e−λ1t + e−λ2t − e−(λ1+λ2)t

=

1
λ1
eλ2t +

1
λ2
eλ1t −

1
λ1+λ2

eλ1t + eλ2t − 1
.

Consider function

Φ(x1, x2) =

1
x1
ex2 +

1
x2
ex1 −

1
x1+x2

ex1 + ex2 − 1
, 0 < x1 ≤ x2.

To compare T (λ1, λ2) and T (µ1, µ2) in terms of MRL ordering is
equivalent to compare the values of Φ(λ1t, λ2t) and Φ(µ1t, µ2t)
for t > 0. Since the direction (µ1t, µ2t) − (λ1t, λ2t) is the
same as (µ1, µ2) − (λ1, λ2), so, if Φ is decreasing in the direction
(µ1, µ2) − (λ1, λ2), then, Φ(λ1t, λ2t) ≥ Φ(µ1t, µ2t) holds.

To prove the theorem, we want to show the function Φ(x1, x2)
is decreasing alongwith the vector fields (1, −1), (1, 1), (x21, −x22),
and (x21, x

2
2).

Denote the numerator part of Φ as N and the denominator part
as D. For i = 1, 2, by ignoring a common positive factor, we have,

∂Φ

∂x1
=

∂N
∂xi

D − N
∂D
∂xi

=


−

1
x21

ex2 +
1
x2

ex1 +
1

(x1 + x2)2


(ex1 + ex2 − 1)

−

 1
x1

ex2 +
1
x2

ex1 −
1

x1 + x2


ex1

= −
1
x21

e2x2 + ex1+x2
 1
x2

−
1
x1

−
1
x21


+ ex2

 1
x21

+
1

(x1 + x2)2


+ ex1


−

1
x2

+
1

x1 + x2
+

1
(x1 + x2)2


−

1
(x1 + x2)2

,

and by symmetry,

∂Φ

∂x2
= −

1
x22

e2x1 + ex1+x2
 1
x1

−
1
x2

−
1
x22


+ ex1

 1
x22

+
1

(x1 + x2)2


+ ex2


−

1
x1

+
1

x1 + x2
+

1
(x1 + x2)2


−

1
(x1 + x2)2

.

Thus,

I1 =
∂Φ

∂x1
−

∂Φ

∂x2

= −
1
x21

e2x2 +
1
x22

e2x1 + ex1+x2
 2
x2

−
2
x1

+
1
x22

−
1
x21


+ ex2

 1
x21

+
1
x1

−
1

x1 + x2


+ ex1


−

1
x22

−
1
x2

+
1

x1 + x2


≤ −

1
x21

e2x2 +
1
x22

e2x1 + ex2
 1
x21

+
1
x1


− ex1

 1
x22

+
1
x2


sgn
= −x22e

2x2 + x21e
2x1 + x22(1 + x1)ex2 − x21(1 + x2)ex1

≤ −x22e
2x2 + x21e

2x1 + x22(1 + x2)ex2 − x21(1 + x1)ex1

= −[b(x2) − b(x1)] ≤ 0,

since b(x) = x2ex(ex − 1 − x) is increasing.
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