
Operations Research Letters 45 (2017) 220–226

Contents lists available at ScienceDirect

Operations Research Letters

journal homepage: www.elsevier.com/locate/orl

Convergent conic linear programming relaxations for cone convex
polynomial programs
T.D. Chuong ∗, V. Jeyakumar
School of Mathematics and Statistics, University of New South Wales, Sydney NSW 2052, Australia

a r t i c l e i n f o

Article history:
Received 17 October 2016
Received in revised form
6 March 2017
Accepted 6 March 2017
Available online 10 March 2017

Keywords:
Cone-convex polynomial program
Conic linear programming relaxation
Convergent relaxation
Semidefinite programming

a b s t r a c t

In this paper we show that a hierarchy of conic linear programming relaxations of a cone-convex polyno-
mial programming problem converges asymptotically under a mild well-posedness condition which can
easily be checked numerically for polynomials. We also establish that an additional qualification condi-
tion guarantees finite convergence of the hierarchy. Consequently, we derive convergent semi-definite
programming relaxations for convex matrix polynomial programs as well as easily tractable conic linear
programming relaxations for a class of pth-order cone convex polynomial programs.

© 2017 Elsevier B.V. All rights reserved.

1. Introduction

Consider the cone-convex polynomial program:

inf
x∈Rn

{f (x) | G(x) ∈ −K}, (P)

where f : Rn
→ R is a convex polynomial, K ⊂ Rm is a closed

convex cone with the vertex at the origin, and G : Rn
→ Rm is a

K -convex polynomial in the sense that

λG(x) + (1 − λ)G(y) − G(λx + (1 − λ)y) ∈ K
for all x, y ∈ Rn, λ ∈ [0, 1],

G := (G1, . . . ,Gm) with Gi, i = 1, . . . ,m, being polynomials
on Rn. The model problem of the form (P) covers a broad range
of convex programming problems, including the standard convex
programs with inequality constraints [3,9], convex semidefinite
programs [21,6] and pth-order cone programs [3,1]. The problems
of the form (P) frequently appear in robust optimization [2]. It
is known, for example (cf. [2, Theorem 6.3.2]), that the robust
counterpart of a convex quadratic program with a second-order
cone constraint under norm-bounded uncertainty can be rewritten
as a conic convex quadratic optimization problemwith the positive
semi-definite cone. Also, many basic control problems, such as
static output feedback design problems, are modeled as conic
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polynomial optimization problems in terms of polynomial matrix
inequalities [5,17].

Recently, an exact conic linear programming relaxation has
been established in [7] for a subclass of cone-convex polynomial
programs of the form (P) where themap G is K -SOS-convex polyno-
mial. That study has provided a unified treatment for the semidef-
inite programming approximation scheme of convex polynomial
programs as it covers corresponding results for problems, such
as matrix SOS-convex polynomial programs [15] and SOS-convex
polynomial programs with inequality constraints [8,10]. It has
been derived by first developing a sum of squares polynomial rep-
resentation of positivity of an SOS-convex polynomial over a conic
SOS-convex inequality system with the help of a separation theo-
rem for convex sets under a qualification condition.

In this paper we develop a new conic linear programming re-
laxation scheme for the cone-convex polynomial program (P) and
establish its convergence.Wedefine a hierarchy of conic linear pro-
gramming relaxation problems in terms of a so-called truncated
quadratic module and the dual cone of K , where the quadraticmod-
ule involves only the objective function. It results in sumof squares
relaxation problems for the problem (P) where the multiplier as-
sociated with the constraint is a constant vector. Consequently,
we obtain corresponding convergent relaxations for convex ma-
trix polynomial programs, polynomial pth-order cone convex pro-
grams and standard convex polynomial programs with inequality
constraints (i.e., K := Rm

+
). We establish the convergence of the hi-

erarchy by employing the Putinar’s Positivstellensatz [18] together
with the Hahn–Banach strong separation theorem.

A convergent hierarchy of semidefinite programming (SDP)
relaxations has already been given in [9, Theorem 2.1] for the
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special case of (P), where K := Rm
+

and G := (G1, . . . ,Gm).
However, the multipliers associated with the constraints Gi, i =

1, 2, . . . ,m, of those relaxation problems are sum of squares
polynomials. This results in higher degree sum of squares
relaxation problemswhich then induce semidefinite programming
relaxations of size that is often large for the present status of SDP
solvers. Our result involves the truncated quadratic module (see
its definition in (2.4)), where the multipliers associated with the
constraints Gi, i = 1, 2, . . . ,m, are constants rather than sum
of squares polynomials as in [9]. As a result, the present scheme
has the potential to simplify the computation of the resulting
semidefinite programming relaxation problems compared to the
corresponding ones arising from the approach of [9].

The outline of the paper is as follows. We first show, in
Section 2, that the optimal values of the conic linear programming
relaxations converge asymptotically to the optimal value of the
cone-convex polynomial program (P) under amildwell-posedness
assumption in the sense that the feasible set of the problem (P) is
nonempty and the objective function f is coercive. Consequently,
we obtain corresponding results for convex matrix polynomial
programs, polynomial pth-order cone convex programs, and
convex polynomial programs with inequality constraints. We then
show, in Section 3, that an additional qualification condition
guarantees finite convergence of the hierarchy. We provide
examples to illustrate how our relaxation schemes can be used to
find the optimal value of the cone-convex polynomial program (P)
by using the Matlab toolboxes such as CVX [4] or YALMIP [12,13].

2. Asymptotic convergence of conic linear programming relax-
ations

In this section, we establish an asymptotic convergence of a
sequence of the conic linear programming relaxations for the cone-
convex polynomial program (P). Let us start with the following
qualification condition.
Well-posedness. We say that the problem (P) is well-posed if the
feasible set of (P) is nonempty and the objective polynomial f is
coercive, i.e., lim inf∥x∥→∞ f (x) = +∞.

The first lemma provides a necessary and sufficient optimality
criterion for the problem (P) without any constraint qualification.
In what follows, we use the dual cone of K ⊂ Rm given by

K ∗
:= {y ∈ Rm

| ⟨y, k⟩ ≥ 0 for all k ∈ K}.

Lemma 2.1 (Asymptotic Multiplier Characterization of Optimal-
ity). Let x̂ ∈ Rn be a feasible point of thewell-posed problem (P). Then,
x̂ is an optimal solution of problem (P) if and only if for any ϵ > 0,
there exists λ ∈ K ∗ such that

f (x) + ⟨λ,G(x)⟩ − f (x̂) + ϵ > 0, ∀x ∈ Rn. (2.1)

Proof. [=⇒] Assume that x̂ ∈ Rn is an optimal solution of (P). Let
ϵ > 0 and let C := {x ∈ Rn

| G(x) ∈ −K}. As the problem (P) is
well-posed, i.e., f is coercive on Rn, which implies that the convex
set

Ω := {(r, y) ∈ R1+m
| ∃x ∈ Rn, f (x) ≤ r, y ∈ G(x) + K}

is closed.
Then, the convex set Ω := Ω +{(ϵ − f (x̂), 0)} is closed as well.

Since x̂ is an optimal solution of (P), we assert that (0, 0) ∉ Ω . The
strong separation theorem (see, e.g., [14, Theorem 2.2]) guarantees
that there exists 0 ≠ (λ0, λ) ∈ R × Rm such that

inf

λ0(r + ϵ − f (x̂)) + ⟨λ, y⟩ | (r, y) ∈ Ω


> 0.

This ensures that λ0 ≥ 0 and λ ∈ K ∗. Moreover, we assert that
there exists δ0 > 0 such that

λ0(f (x) − f (x̂) + ϵ) + ⟨λ,G(x)⟩ > δ0, ∀x ∈ Rn (2.2)

due to (f (x),G(x)) ∈ Ω for each x ∈ Rn. If λ0 = 0, then we assert
by (2.2) that ⟨λ,G(x̂)⟩ > δ0 > 0. This contradicts the fact that x̂
is a feasible point of problem (P), and thus, ⟨λ,G(x̂)⟩ ≤ 0. So, we
can assume without loss of generality that λ0 = 1 and hence (2.1)
holds.
[⇐=] Let ϵ > 0. Assume that there exists λ ∈ K ∗ such that (2.1)
holds. Let x̃ ∈ Rn be an arbitrary feasible point of problem (P). It
follows that ⟨λ,G(x̃)⟩ ≤ 0 due to λ ∈ K ∗ and G(x̃) ∈ −K . Then,
f (x̃) + ⟨λ,G(x̃)⟩ ≤ f (x̃), which together with (2.1) entails that

f (x̃) > f (x̂) − ϵ.

Since ϵ > 0 was arbitrarily chosen, we conclude that f (x̂) ≤

f (x̃). Consequently, x̂ is an optimal solution of problem (P), which
completes the proof. �

Denote by R[x] the ring of real polynomials in x := (x1, . . . , xn).
The polynomial f ∈ R[x] is a sum of squares polynomial (see,
e.g., [11]) if there exist polynomials fj ∈ R[x], j = 1, . . . , r such
that f =

r
j=1 f

2
j . The set of all sum of squares polynomials on Rn

is denoted by Σn, while the set of all sum of squares polynomials
on Rn with degree at most d is denoted by Σn,d. Given polynomials
{g1, . . . , gr} ⊂ R[x], the notation M(g1, . . . , gr) stands for the set
of polynomials generated by {g1, . . . , gr}, i.e.,

M(g1, . . . , gr) := {σ0 + σ1g1 + · · · + σrgr | σj ∈ Σn,

j = 0, 1, . . . , r}. (2.3)

The set M(g1, . . . , gr) is archimedean if there exists h ∈

M(g1, . . . , gr) such that the set {x ∈ Rn
| h(x) ≥ 0} is compact.

Lemma 2.2 (Putinar’s Positivstellensatz [18]). Let f , gj ∈ R[x],
j = 1, . . . , r. Suppose that M(g1, . . . , gr) is archimedean. If f (x) > 0
for all x ∈ {y ∈ Rn

| gj(y) ≥ 0, j = 1, . . . , r}, then f ∈

M(g1, . . . , gr), i.e., there exist σj ∈ Σn, j = 0, 1, . . . , r, such that
f = σ0 +

r
j=1 σjgj.

Let τ ∈ R be such that τ ≥ f (x̂), where x̂ ∈ Rn is a feasible
point of problem (P). Given k ∈ N, wedefine the truncated quadratic
moduleMk generated by the polynomial τ − f as

Mk := {σ0 + σ1(τ − f ) | σl ∈ Σn, l = 0, 1, deg(σ0) ≤ k,
deg(σ1f ) ≤ k, deg(Gi) ≤ k, i = 1, . . . ,m}. (2.4)

Conic linear programming relaxation problems. We examine a
family of conic linear programming relaxation problems for the
cone-convex polynomial program (P). For each k ∈ N, let us
consider the conic linear programming relaxation problem of (P):

sup
t∈R,λ∈Rm


t | f + ⟨λ,G⟩ − t ∈ Mk, λ ∈ K ∗


, (Pk)

whereMk is given by (2.4).
The first theorem shows that if the cone-convex polynomial

program (P) has an optimal solution, then the optimal values of
the conic linear programming relaxation problems (Pk) (k ∈ N)
converge to the optimal value of the problem (P) when the degree
bound k tends to infinity.

Theorem 2.3 (Asymptotic Convergence of Relaxations). Let x̄ ∈ Rn

be an optimal solution of the well-posed problem (P). Then, we have

lim
k→∞

f ∗

k = f (x̄),

where

f ∗

k := sup
t∈R,λ∈Rm


t | f + ⟨λ,G⟩ − t ∈ Mk, λ ∈ K ∗


, k ∈ N.
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