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a b s t r a c t

We study domination analysis of algorithms for the bipartite quadratic assignment problem. A formula for
the average objective function value of solutions is presented, whereas computing the median objective
function value is shown to be NP-hard. An upper bound on the domination ratio of any polynomial time
heuristic is given. Also, we show that heuristics that produce no worse than the average solutions have
domination ratio at least 1

mn . Heuristics with improved domination ratio are also presented.
© 2017 Elsevier B.V. All rights reserved.

1. Introduction

For a givenm× n×m× n array Q = (qijkℓ) andm× nmatrices
c = (cij) and d = (dij), the bipartite quadratic assignment problem
of type 1 (QAP(B1)) is to

min
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j=1

m
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qijkℓxijykℓ +
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cijxij +
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i=1
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dijyij

s.t.
n

j=1

xij = 1 i = 1, 2, . . . ,m, (1)

m
i=1

yij = 1 j = 1, 2, . . . , n, (2)

xij, yij ∈ {0, 1} i = 1, . . . ,m, j = 1, . . . , n.

Similarly, for a givenm × m × n × n array Q = (qijkℓ), andm × m
matrix c = (cij) and n × n matrix d = (dij), the bipartite quadratic
assignment problem of type 2 (QAP(B2)) is to
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xij = 1 i = 1, 2, . . . ,m, (3)
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n
i=1

yij = 1 j = 1, 2, . . . , n, (4)

xij, ykℓ ∈ {0, 1} i, j = 1, . . . ,m, k, ℓ = 1, . . . , n.

When m = n, the problems QAP(B1) and QAP(B2) are the same.
Furthermore, if we impose the additional restriction that xij = yij
for all i, j, both QAP(B1) and QAP(B2) become equivalent to the
well-known quadratic assignment problem (QAP) [5]. Note that the
constraints xij = yij can be enforced simply by modifying the
entries of Q , c and dwithout explicitly stating the constraints [23].
Hence QAP(B1) and QAP(B2) are proper generalizations of QAP.

The problems QAP(B1) and QAP(B2) were studied by Punnen
and Wang in [23] where they proposed efficient heuristic
algorithms to solve these problems. They also reported extensive
experimental results establishing the quality of their heuristic
solutions. In QAP(B1) and QAP(B2), if the constraints xij, yij ∈

{0, 1} are replaced by 0 ≤ xij, yij ≤ 1 for all i, j, we get their
corresponding bilinear programming (BLP) [3,15,16] relaxations,
denoted by BLP1 and BLP2, respectively. It is well known that there
exists an optimal solution to the BLP which is an extreme point of
the underlying convex polytope [3,15,16]. In the case of BLP1 and
BLP2, the coefficientmatrix of the constraints is totally unimodular
and hence all extreme points are of 0–1 type. Thus, BLP1 and BLP2
are respectively equivalent to QAP(B1) and QAP(B2). Therefore,
QAP(B1) and QAP(B2) can also be solved using general purpose
algorithms for BLP.

QAP(B1) and QAP(B2) are known to be strongly NP-hard [23].
To the best of our knowledge, theoretical properties of these
problems are not investigated thoroughly in the literature. In this
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paper, we study the complexity of QAP(B1) and QAP(B2) from the
point of view of domination analysis of algorithms [2,8]. Many
researchers considered such analysis for various combinatorial
optimization problems [6,2,4,8–11,13,12,14,17,18,20–22,24,26,27,
25,28–30]. Domination analysis is also linked to very large-scale
neighborhood search [1,19] and exponential neighborhoods [7].

In this paper, we provide a closed form formula to calculate
the average value of all solutions of QAP(B1) and QAP(B2) and
show that there are at least nm−1mn−1 and mm−1nn−1 solutions
respectively for QAP(B1) and QAP(B2) that have objective function
value equal to or worse than the average objective function value
of all solutions. For the standard quadratic assignment problem,
although a closed form formula exists to calculate the average
value of solutions, establishing non-trivial domination results is
an open problem [4,13,25]. We then show that some heuristics
that work well in practice, could produce solutions with objective
function value worse than the average value of solutions, and
we also provide simple polynomial algorithms that guarantee a
solution with objective function value no worse than the average
value of solutions. Unlike the average value, computing themedian
value of solutions for QAP(B1) and QAP(B2) is shown to be NP-
hard. Further, we show that computing a solution whose objective
function value is no worse than that of nmmn

− ⌈
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solutions of QAP(B1) is NP-hard for any fixed rational number α >
1. Likewise, computing a solutionwhose objective function value is
no worse than that ofmmnn

−⌈
m
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⌉
⌈
m
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⌈
n
α
⌉
⌈
n
α ⌉ solutions of QAP(B2)

is also shown to be NP-hard for any fixed rational number α > 1.
LetX1 denote the set of all 0-1m×nmatrices satisfying (1), and

X2 denote the set of 0-1 m × m matrices satisfying (3). Similarly,
let Y1 be the set of all 0-1 m × n matrices satisfying (2) and Y2 be
the set of all 0-1 n×nmatrices satisfying (4). Also, letF1 andF2 be
the sets of feasible solutions of QAP(B1) and QAP(B2), respectively.
Note that |F1| = nmmn and |F2| = mmnn. Let M = {1, 2, . . . ,m}

and N = {1, 2, . . . , n}. For given cost arrays Q , c and d, and a
feasible solution (x, y) ∈ F1, where x ∈ X1, y ∈ Y1, let f1(x, y)
be the objective function of QAP(B1). Likewise, for x ∈ X2, y ∈ Y2,
let f2(x, y) be the objective function of QAP(B2).

2. QAP(B1) and QAP(B2) as a QAP

In this section we show how every instance of QAP(B2) can be
transformed to an equivalent instance of QAP. Recall that QAP can
be observed as a problemof finding an optimal perfectmatching on
a complete bipartite graph with a quadratic objective function [5].
Similarly, every instance of QAP(B2) can be observed as a problem
on the complete bipartite graphs Km,m = (V1 ∪ V2, V1 × V2)
and Kn,n = (V3 ∪ V4, V3 × V4), where vertices are denoted by
V1 = {u1, . . . , um}, V2 = {v1, . . . , vm}, V3 = {w1, . . . , wn} and
V4 = {z1, . . . , zn}, as follows. Every x ∈ X2 corresponds tom edges
(ui, vj) of Km,m for which xij = 1. That is, x ∈ X2 corresponds to
a set of m edges where exactly one is incident to each vertex of
V1, see (3). Similarly, y ∈ Y2 corresponds to a set of n edges of Kn,n,
where exactly one is incident to each vertex of V4, see (4). See Fig. 1
for an example. Then to every edge (ui, vj) of Km,m and (wk, zℓ) of
Kn,n, costs cij and dkℓ are assigned, respectively. Furthermore, cost
qijkℓ is assigned to every pair of edges (ui, vj), (wk, zℓ).

To create a corresponding bipartite graph instance of QAP,
we need to ensure that the edges that correspond to (ui, vj′),
(ui, vj′′) (which simultaneously can appear in a feasible solution
of QAP(B2)) are not adjacent in the created QAP instance. And
similarly, we need to ensure that the edges that correspond to
(wi′ , zj), (wi′′ , zj) are not adjacent in the created QAP instance. To
do so, for each ui ∈ V1 we create a copy of Km,m denoted by K i

m,m,
and for each zℓ ∈ V4 we create a copy of Kn,n denoted by K ℓ

n,n.
In every K i

m,m, linear costs of edges that are not incident to ui are

Fig. 1. The bipartite graph visualization of a feasible solution of QAP(B2) with
x11 = x21 = y11 = y32 = y13 = 1.

Fig. 2. A feasible solution of a QAP instance created from QAP(B2) which
correspond to the solution in Fig. 1. Solid edges are the only one that contribute
to the objective function value.

changed to 0. Analogously, in every K ℓ
n,n, linear costs of edges that

are not incident to zℓ are changed to 0. Now the QAP instance is
created by concatenating K i

m,m’s, for i = 1, . . . ,m, and K ℓ
n,n’s, for

ℓ = 1, . . . , n, into one bipartite graph that we denote by G, see
Fig. 2. Lastly, to insure that in every feasible solution of the created
QAP instance, all edges that appear are within the same K i

m,m or
K ℓ
n,n, wedefine the linear costs of edges that are notwithin the same

K i
m,m or K ℓ

n,n to be equal to some large value L.
To complete the transformation, we need to formally describe

all the costs associated with G. That is, we need to define the linear
cost matrix c̄ and the quadratic cost array Q̄ of the corresponding
QAP. Linear costs are described above, and are formally given by:

c̄(i−1)m+i,(i−1)m+j = cij ∀ i, j = 1, . . . ,m

and

c̄m2+(j−1)n+i,m2+(j−1)n+j = dij ∀ i, j = 1, . . . , n.

Furthermore, c̄ij = Lwhen i, j ≤ m2 and ⌊(i−1)/m⌋ ≠ ⌊(j−1)/m⌋,
or i, j > m2 and ⌊(i−m2

− 1)/n⌋ ≠ ⌊(j−m2
− 1)/n⌋. Also, c̄ij = L

if i ≤ m2 < j or j ≤ m2 < i. Lastly, remaining c̄ij’s are set to be 0. It
remains to define the quadratic costs which are given by

q̄(i−1)m+i,(i−1)m+j,m2+(ℓ−1)n+k,m2+(ℓ−1)n+ℓ = qijkℓ
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