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a b s t r a c t

A numerical procedure based on the Boundary Element Method with internal cells and dedicated to the

simulation of the ductile tearing of thin metal sheets is presented. Plasticity is handled with an integral

formulation based on the initial strain approach involving a discretization of the planar domain. Time

integration is performed in an implicit way for the local strain–stress relationships while the global

algorithm relies on an explicit formulation. Damage is represented by the scalar parameter of the

uncoupled local damage model of Rice and Tracey. Within the scope of our applications, the cracks

propagate along paths a priori known. As damage spreads, boundary elements are gradually released.

Elastoplastic problems with large yielding zones are solved and compared to reference solutions. At

last, the ductile tearing of a specimen is addressed. The calibration of the critical damage parameter

leads to numerical results in good agreement with the experimental ones.

& 2011 Elsevier Ltd. All rights reserved.

1. Introduction

Fracture phenomena occurring in aeronautical structures have
to be handled efficiently so as to ensure the structural integrity of
the products all along their lifetime. For civil aircrafts, the risks
associated to fracture are assessed through the damage-tolerance
approach. Indeed, aeronautical panels made of aluminium alloys
are able to withstand a stable crack propagation process before
the occurrence of the final unsteady fracture. At the crack-tip, the
competition between irreversible processes of crack extension
and plasticity tends to slow down the propagation. Hence, the
accurate simulation of this phenomenon requires a numerical
method able to deal effectively with cracks and plasticity simul-
taneously. The BEM has proven its ability to handle both as
summed up by Brebbia et al. [1], Bonnet [2] and Aliabadi [3].

However, the application of the BEM to nonlinear fracture
mechanics or damage mechanics has only been treated in a few
papers. Herding and Kuhn [4] have developed a BEM formulation
associated to Lemaı̂tre and Gurson models. Cerrolaza and Garcı́a
[5] have solved geotechnical problems with a procedure including
the Mazars model. A non-local continuum damage mechanics
model has been presented for the first time by Garcı́a et al. [6] for
the BEM framework. Hatzigeorgiou and Beskos [7] have proposed

a method to include the damage influence into the inelastic part
of the equations. Lin et al. [8] have dealt with non-local strain
softening with a yield limit influenced by damage. An integral
operator for non-local strain softening has been described by
Sládek et al. [9]. Botta et al. [10] have modeled the damage with a
non-local model suitable for concrete and derived the associated
Consistent Tangent Operators (CTO). Gun has translated the creep
damage effects into the inelastic part of the equations [11] and
extended his formulation so that both the creep and the plasticity
are taken into account [12]. Benallal et al. [13] have extended
their previous works [10] with an emphasis on localization and
mesh-independency.

In the present work, a BEM procedure for the resolution of
bidimensional problems of ductile tearing is described. The
plasticity is managed through the integral formulation based on
the initial strain approach. The discretization of the integral
equations leads to algebraic systems that provide the displace-
ments and tractions on the boundary as well as the stresses
within the domain for fixed plastic strain states. An explicit
algorithm combines these systems with an implicit local integra-
tion scheme for the plasticity in order to solve efficiently general
elastoplastic problems. The uncoupled local damage model of Rice
and Tracey [14,15] is employed and describes the damage as a
scalar field. This damage parameter is updated as the applied load
increases and is used to drive the crack propagation. The exten-
sion of the crack is handled with the modification of boundary
conditions on specimens where the propagation path is a priori
known. Elastoplastic problems are solved with the developed
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algorithms and the results compared with Finite Element Method
(FEM) solutions. Finally, an experiment of ductile tearing on a
Center Crack Tension (CCT) specimen is simulated. A proper
calibration of the critical damage value provides results in good
accordance with experimental ones.

2. Boundary element formulation

2.1. Boundary integral equations

In the BEM formulation for problems involving material
nonlinearities, domain integrals are added to the usual boundary
integrals. The following equations are expressed in terms of rate
so as to comply with the time dependent plasticity description.
We consider a domain O bounded by @O submitted to a given
plastic strain rate state _ep

jk, the displacement of a point x can be
expressed as

cijðxÞ _ujðxÞ ¼
Z
@O

Uijðx,yÞ_t jðyÞ dSðyÞ��
Z
@O

Tijðx,yÞ _ujðyÞ dSðyÞ

þ

Z
O
sijkðx,yÞ_ep

jkðyÞ dOðyÞ ð1Þ

where cijðxÞ is a free term depending on the geometry around x, _uj

and _t j are respectively the displacement and traction rates on @O,
Uij (Eq. (17)), Tij (Eq. (18)) and sijk (Eq. (19)) are kernels of the
Kelvin fundamental solution, �

R
denotes an integral in the sense of

the Cauchy Principal Value (CPV).
For a given point x inside O, the small strain rate _eijðxÞ can be

derived from Eq. (1) with

_eijðxÞ ¼
1

2

@ _uiðxÞ

@xjðxÞ
þ
@ _ujðxÞ

@xiðxÞ

� �
ð2Þ

The stress rate at point x can be thereafter obtained from the
combination of Eq. (2) with the elastic constitutive Hooke tensor
Hijkl

_s ijðxÞ ¼Hijklð_eklðxÞ�_e
p
klðxÞÞ ð3Þ

After some manipulations (see Brebbia et al. [1] for a thorough
description of the process), the final expression of the integral
equation for internal stresses comes out

_s ijðxÞ ¼

Z
@O

Dijkðx,yÞ_tkðyÞ dSðyÞ�

Z
@O

Sijkðx,yÞ _ukðyÞ dSðyÞ

þ �
Z
O
Sijklðx,yÞ_ep

klðyÞ dOðyÞþ f ij½_e
p
klðxÞ� ð4Þ

with Dijk, Sijk and Sijkl kernels derived from those of Eq. (1) and
defined in Eqs. (20)–(22), fij (Eq. (23)) a free term, whose
definition has first been given by Bui [16], depending on the
plastic strain rate at the source point x.

2.2. Numerical discretization

The integral equations (1) and (4) provide continuous representa-
tions of both boundary displacement and domain stress rates. When
it comes to problems on domains with general shapes, the solution
has to rely on numerical procedures. The domain and the continuous
equations have therefore to be discretized. The discretization process
first concerns the geometry. The boundary @O is divided into n@O
segments. The domain O is decomposed into nO triangular cells.
Then, unknown mechanical fields on the elementary supports are
expressed in terms of polynomial functions and nodal unknowns.
A local quadratic discontinuous approximation is chosen for the
boundary fields. For a given boundary element @Oe, the positions of
the interpolation points depend on a scalar parameter a (Fig. 1).
A value of 1/6 has proven its reliability.

Concerning the local plastic field in the triangular cells, a linear
discontinuous approximation is used. The interpolation points are
positioned within the triangles with a parameter b (Fig. 2). The choice
of b¼ 1=3 leads to both stability and accuracy during the simulations.

The need for discontinuous interpolations on both boundary and
domain elements is justified by the application to fracture problems.
Cracks propagation is modeled through the progressive release of
boundary elements and the update of boundary-conditions. Since
successive crack-tips are located at boundary elements extremities,
collocation points must then be located away from these extremities
so as to ensure the finiteness of tractions, stresses and plastic stains.
Strictly speaking, discontinuous boundary elements and semi-dis-
continuous domain elements are only mandatory along cracks paths.
However, for the sake of programming simplicity and at the expense
of computational cost, all elements are here formulated with dis-
continuous interpolation schemes.

Since the integration supports and the elementary unknown
fields have been discretized, the continuous equation (1) can be
transformed in

1
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where 1/2 is the value of cijðxÞ when xA@O and @O is smooth
enough at x, Ne,m

1D is the mth interpolation function on @Oe, Ne,m
2D is

the mth interpolation function on Oe, _t
e,m
j , _ue,m

j and _ep e,m
jk are the

discrete unknowns.
The discretization process applied to Eq. (4) gives
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Fig. 1. Parametrization of the collocation points on the boundary element @Oe .

Fig. 2. Parametrization of the collocation points on the domain element Oe .
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