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a b s t r a c t

In this paper, a novel hybrid finite difference and moving least square (MLS) technique is presented for

the two-dimensional elasticity problems. A new approach for an indirect evaluation of second order

and higher order derivatives of the MLS shape functions at field points is developed. As derivatives are

obtained from a local approximation, the proposed method is computationally economical and

efficient. The classical central finite difference formulas are used at domain collocation points with

finite difference grids for regular boundaries and boundary conditions are represented using a moving

least square approximation. For irregular shape problems, a point collocation method (PCM) is applied

at points that are close to irregular boundaries. Neither the connectivity of mesh in the domain/

boundary or integrations with fundamental/particular solutions is required in this approach. The

application of the hybrid method to two-dimensional elastostatic and elastodynamic problems is

presented and comparisons are made with the boundary element method and analytical solutions.

& 2011 Elsevier Ltd. All rights reserved.

1. Introduction

Meshless approximations have gained much popularity since
Nayroles et al. [1] proposed the diffuse element method. Later,
Belyschko et al. [2] and Liu et al. [3] proposed the element-free
Galerkin method and reproducing kernel particle methods, respec-
tively. A feature of these methods is that they do not require a
structured grid and are hence meshless. Recently, Atluri and Zhu
[4,5] presented a family of Meshless methods based on the Local
weak Petrov–Galerkin formulation (MLPGs) for arbitrary partial
differential equations with MLS approximation. MLPG is reported
to provide a rational basis for constructing meshless methods with a
greater degree of flexibility. Local Boundary Integral Equation
method (LBIE) with MLS and polynomial radial function has been
developed by Sladek et al. [6–8] for the boundary value problems in
anisotropic non-homogeneous media. Wen and Aliabadi [9–12] and
Li et al. [13] have extended the meshless approach to problems in
fracture mechanics and woven composites.

In the last decade, developments of the radial basis functions
(RBF) as a truly meshless method has drawn the attention of
many investigators (see Golberg et al. [14]). Hardy [15] and Hon
and Mao [16] used multiquadric interpolation method for solving
linear differential equation. Li et al. [17] compared the method of

fundamental solutions (MFS) and dual reciprocity method (DRM),
by the use of radial basis functions.

As an alternative approach, finite point method was proposed
by Oñate et al. [18] for elasticity problems on the basis of
weighted least-square procedure. Zhang et al. [19] developed a
least-square collocation meshfree method to improve the solution
accuracy. They demonstrated the application of a new moving
least-square technique, which differs from original MLS to elas-
ticity and crack problems. For crack growth problems investigated
by Lee and Yoon [20], the inherent advantage of not involving a
mesh generation is retained. In addition, the speed of computing
derivatives of meshfree approximation was accelerated by a
derivative-approximating technique.

Finite Difference Method [21,22] (FDM) belongs to the strong-
form methods and the formulation procedure is relatively simple
and straightforward compared with the meshless weak-form
method. Like other strong form method, FDM suffers from the
instability problems particularly for structural problems with
stress boundary conditions. Radial bases function interpolation
based on finite difference method was introduced by Liu et al.
[23]. By incorporating the radial point interpolation into the
classical finite difference approach with a least square technique,
the resultant set of algebraic equations were solved more effi-
ciently and accurately than using a typical PCM. For the point
collocation method, the difficulty of determination of high order
derivatives of shape functions has been overcome by an indirect
scheme proposed by Wen and Aliabadi [24].
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In this paper, MLS approximation is introduced into the finite
difference method using the same finite difference grid net, i.e.,
the boundary conditions using MLS are applied at the boundary
collocation points, improved point collocation method is applied
to grid points near irregular boundaries and the classical FDM to
domain net points. Unlike the radial bases function, there are no
field points to be introduced either on the boundary or inside the
domain.

2. Point collocation method

2.1. MLS interpolation

Consider a domain O with boundary G containing a sub-
domain Oy as shown in Fig. 1. The sub-domain is in neighbour-
hood of a point y and is considered as the domain of MLS
approximation for the trial function at y. This domain is called
the support domain to an arbitrary point y. To interpolate the
distribution of function u in the sub-domain Oy over a number of
randomly distributed nodes {yi}¼{y1i,y2i}, i¼1,2,y,ny, we have
the approximation of function u at the point y as

uðyÞ ¼ pðyÞT aðyÞ ð1Þ

where a(y) is a vector of unknown coefficients and p(y)T
¼{p1(y),

p2(y),y,pm(y)} is a complete monomial basis, m denotes the
number of terms in the basis, i.e. for two-dimensional problems

pT ðyÞ ¼ f1,y1,y2g, linear basis m¼ 3; ð2Þ

pT ðyÞ ¼ f1,y1,y2,y2
1,y1y2,y2

2g, quadraticbasis m¼ 6: ð3Þ

The unknown coefficient vector a(y) is determined by mini-
mising L2 norm with a weighted function w(y,x) as

JðaÞ ¼
Xny

i ¼ 1

wiðy,xiÞ½p
T ðxiÞaðyÞ�ûiðxiÞ�

2 ð4Þ

where xi denotes the position vector of node i in the support
domain, wi(y,xi) is the weight function associated with the node i

with wi(y,xi)40 for all x in the support domain and ûiðxiÞ is the
fictitious nodal values, but in general not the values of the
unknown trial function at the nodes, uiðxiÞ. The stationary value
of J(a) with respect to a(y) leads to a linear relation between the
coefficient vector a(y) and the vector of fictitious node values û as
follows:

Aðy,xÞaðyÞ ¼ Bðy,xÞû ð5Þ

where matrices A(y,x) and B(y,x) are defined by

Aðy,xÞ ¼ pT wp¼
Xny

i ¼ 1

wiðy,xiÞpðxiÞp
T ðxiÞ ð6Þ

Bðy,xÞ ¼ pT w¼ ½w1ðyÞpðx1Þ,w2ðyÞpðx2Þ,. . .,wnðyÞðyÞpðxnðyÞÞ�: ð7Þ

The MLS approximation is well defined only when the matrix
A(y) in Eq. (5) is non-singular. A necessary condition to satisfy this
requirement is that at least m weight functions are non-zero (i.e.
ny4m) for each sample point yAO and that the nodes in Oy will
not by arranged in a special pattern such as on a straight line.
Solving linear equations in Eq. (5) for coefficients a(y) gives
following relation:

uðyÞ ¼FT
ðy,xÞû¼

XnðyÞ
i ¼ 1

fiðy,xiÞûi ð8Þ

where

FT
ðy,xÞ ¼ pT ðyÞA�1

ðy,xÞBðy,xÞ ð9Þ

or

fiðy,xÞ ¼
Xm

j ¼ 1

pjðyÞ½A
�1
ðy,xÞBðy,xÞ�ji ð10Þ

Usually fi(y,x) is called the shape function of the MLS
approximation corresponding to the nodal point x. The support
area of the nodal point x is taken to be a circle of radius dy centred
at x (same size of local sub-domain centred at field point y). The
selection of the radius dy is important in the MLS approximation
because it determines the range of the interaction between the
degrees of freedom defined at the considered nodes. The size of
the support domain (r) should be sufficiently large to cover the
nodes in the domain of definition hence ensuring the regularity of
the matrix A. In the numerical process, the radius dy will be
determined by the minimum number of ny in the sub-domain.
A fourth order spline type weight function is defined as

wiðy,xiÞ ¼
1�6 r

dy

� �2
þ8 r

dy

� �3
�3 r

dy

� �4
, 0rrrdy

0, dyrr

8<
: ð11Þ

where r¼9y�xi9. As the matrices in the shape function A�1(y,x)
and B(y,x) in Eq. (10) are functions of field points and nodal
positions in the support domain, the determination of high order
derivatives of shape functions with respect to the field point y will
become more complicated in the numerical process.

2.2. Direct technique for MLS shape function’s derivatives

The partial derivatives of shape function can be obtained from
Eq. (8) by a straightforward differentiation, using MLS, as

u,kðyÞ ¼FT
,kðy,xÞû¼

Xny

i ¼ 1

fi,kðy,xiÞûi ð12Þ

where ( ),k denotes q( )/qyk and

fi,kðy,xiÞ ¼
Xny

i ¼ 1

½pi,kðA
�1BÞþpiðA

�1
,k BþA�1B,kÞ� ð13Þ

As A�1A¼I, the derivative of the inverse of matrix A with
respect to yk is given by

A�1
,k ¼�A�1A,kA�1

ð14Þ

node xn
field point y

sub-domain Ωy

support domain of xn

Ω

Γ

Fig. 1. Sub-domain Oy for MLS approximation of the field point y and the support

area around node xn.
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