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In this paper, a multiwavelet Galerkin boundary element method is presented for the fast solution of

the stationary Stokes problem in three dimensions. Piecewise linear discontinuous multiwavelet bases

are constructed on each patch of piecewise smooth surface individually, which allow easy and efficient

evaluation of the matrix entries. Because of the use of the multiwavelets, the system matrix can be

compressed to O (N) (N denotes the number of unknowns) nonzero entries without compromising the

order of convergence as for the conventional Galerkin boundary element method. Numerical results of

two test samples are given to demonstrate the availability of the present method.

& 2011 Elsevier Ltd. All rights reserved.

1. Introduction

The Stokes problem has been usually applied to model incom-
pressible creeping flows where the fluid Reynolds number is very
low. The problem has been studied extensively by boundary
element method (BEM). The BEM is often more convenient than
the traditional finite element method (FEM), since the correspond-
ing equations are formulated on the boundary, which satisfy the
incompressibility constraint. However, the system matrices of
boundary element equations are computed densely due to the
nonlocal nature of the boundary integral operators, which is the
main disadvantage of the BEM compared with FEM that leads to
sparse matrices. This drawback makes inconvenience to apply the
BEM to the large-scale problems. However, many methods for the
fast solution of BEM have been developed in the last decades.
Prominent examples for such methods are the fast multipole
method [1–3], the multi-level BEM [4,5], the panel clustering [6],
H-matrices [7] and the adaptive cross approximation [8]. Further-
more, wavelet Galerkin BEM (GBEM) [9–29] was introduced and
successfully applied to many practical problems in the last years.

In Ref. [29], we have described a GBEM using Alpert multi-
wavelets proposed in Ref. [10] for solving the two-dimensional
Stokes problem. The multiwavelets not only have short supports
and high order of vanishing moments but also are simply
piecewise polynomials which allow easy and efficient evaluation
of the matrix entries. In this paper, we will present a multiwavelet
GBEM (MGBEM) for solving the three-dimensional Stokes

problem, in which the multiwavelets are constructed on each
patch individually. The multiwavelets have higher order of
vanishing moment compared with Haar wavelets [17]; hence,
we can obtain a sparser system matrix containing O(N) nonzero
entries by using two step compression strategies. What’s more,
the multiwavelets are simpler piecewise polynomials compared
with Spline wavelets [12,18,19,22], therefore, we can calculate
the matrix entries in shorter times.

We consider the stationary Stokes problem with Dirichlet
boundary condition
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where O is an open bounded domain in R3 of points x¼(x1,x2,x3),
its boundary G is assumed to be piecewise smooth, the comple-
ment of O¼OþG is denoted by O’, and n¼(n1,n2,n3) denotes the
unit exterior normal to G. The unknowns are the velocity
u¼(u1,u2,u3) and pressure p of the viscous incompressible fluid
filled in O or O0, here the kinematic viscosity m is constant,
g¼(g1,g2,g3) is a given function on G.

The solution (u,p) of problem (1) can be expressed in the form
of the simple layer potentials [30,31,32]
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where t¼(t1,t2,t3) stands for the vectorial density to be deter-
mined and (Uij,Pi) is the fundamental solution of Stokes equation

Uijðx,yÞ ¼ 1
8pm

dij

9x�y9 þ
ðxi�yiÞðxj�yjÞ

9x�y93

� �
,

Piðx,yÞ ¼ xi�yi

4p9x�y93 , i,j¼ 1,2,3,

8>><
>>: ð3Þ

where dij is the Kronecker symbol.
Using the boundary condition of problem (1) one obtains the

boundary integral formulation

gjðyÞ ¼
X3

i ¼ 1

Z
G

tiðxÞUijðx,yÞdSx, j¼ 1,2,3, yAG, ð4Þ

which defines a continuous mapping gAUðGÞ-tAðH�1=2ðGÞÞ3 and
is equivalent to the following Galerkin variational problem
[30,32]

find tATðGÞ, such that 8t0ATðGÞ,
bðt,t0Þ ¼/g,t0SL2ðGÞ,

(
ð5Þ

where TðGÞ ¼ ðH�1=2ðGÞÞ3=S, S denotes an equivalent relation:
t�t’ if and only if t�t

0
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0
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Here, considering that t is unique in the sense of differing by
an additive constant vector proportional to n, we add an equation
for obtaining a unique solutionZ
G

tUndS¼ 0: ð7Þ

Thus, t can be uniquely determined by combining Eqs. (5)
and (7).

The rest of this paper is outlined as follows. Section 2 gives the
construction of the multiwavelets on piecewise smooth surface in
three dimensions. Then, the MGBEM is described in Section 3. In
Section 4, two numerical examples are given to demonstrate the
availability of the present method. Finally, Section 5 contains
some conclusions.

2. Multiwavelet bases

In the conventional GBEM, the problem (5) is approximated in
a finite dimensional subspace with single scale bases. This leads
to a dense linear system. To overcome this drawback, the problem
(5) will be approximated in a nested family of finite dimensional
trial spaces VJ(G)CVJþ1(G) which consist of piecewise polynomial
functions in local coordinates and are spanned by multi-
wavelet bases.

To obtain the spaces VJ(G), we assume that the boundary G is
given as a parametric surface consisting of smooth patches. More
precisely, G can be partitioned into NG patches Geðe¼ 1,2, � � � ,NGÞ

which are smooth images of the reference element
E¼{n¼(x1,x2)AR2:0ox1o1,0ox2o1�x1}, i.e., there exist bijec-
tive mappings Xe(e¼1,2,y,NG) which are analytic in E, such that
Ge¼Xe(E). The partition fGeg

NG
e ¼ 1 is assumed to be regular, i.e., for

eae0, 2Ge \
2Ge0 is either empty or a vertex or a common edge.

As shown in Fig. 1, by successively dividing the reference

element E into 4J (JZ0) congruent triangles fEJ
kg

4J

k ¼ 1
, we define a

space SJ(E) of piecewise polynomial functions

SJðEÞ ¼ fvAL2ðEÞ : v9EJ
k

APm, k¼ 1,. . .,4J
g: ð8Þ

Let M¼(mþ1)(mþ2)/2 denote the dimension of Pm, then the
space SJ(E) has dimension sJ¼M4J. It is apparent that

S0ðEÞ � S1ðEÞ � � � � � SJðEÞ � � � � : ð9Þ

For J¼ 1,2,3,. . ., we define the rJ¼3M4J�1 dimensional space
KJ(E) to be the orthogonal complement of SJ�1(E) in SJ(E), i.e.,
SJ(E)¼SJ�1(E)�KJ(E), so we inductively obtain the multiscale
decomposition

SJðEÞ ¼ S0ðEÞ � K1ðEÞ � � � � � KJðEÞ: ð10Þ

The polynomial space Pm on the reference element E can be
spanned by the conventional monomial base fjiðnÞg

M
i ¼ 1. For

J¼ 0,1,2,. . ., we define functions jJ,k,i:E-R by

jJ,k,i ¼
ji3m

J
k, nAEJ

k,

0, n 2AEJ
k,

8<
: ð11Þ

with k¼ 1,2,. . .,4J ,i¼ 1,2,. . .,M. mJ
k denotes the affine transforma-

tion mapping from EJ
k to E. Then the set {jJ,k,i} forms the single

scale base of the space SJ(E).
Suppose that function set fcig

r1

i ¼ 1 forms a base for K1(E). Since
K1(E) is orthogonal to S0(E), the multiwavelet bases fcig

r1

i ¼ 1 have
vanishing moments of mþ1 order

/ciðnÞ,n
tSL2ðEÞ ¼

Z
E
ciðnÞn

tdn¼ 0 ð12Þ

in which t¼ ðu1,u2ÞAN2
0 , 9t9¼ u1þu2omþ1. For J¼ 1,2,3,. . ., we

define functions cJ,k,i:E-R by

cJ,k,i ¼
ci3m

J�1
k , nAEJ�1

k ,

0, n 2AEJ�1
k ,

8<
: ð13Þ

with k¼ 1,2,. . .,4J�1, i¼ 1,2,. . .,r1. Then the set {cJ,k,i} forms the
base of the space KJ(E). It is obvious that the base functions have
also vanishing moments of mþ1 orderZ

E
cJ,k,iðnÞn

tdn¼
Z

EJ

k

ðci3m
J
kÞn

tdn¼
Z

E
ciðnÞn

tdn¼ 0, 9t9omþ1:

ð14Þ

Now via the parametric representations of the boundary G, we
define the single scale bases and multiwavelet bases on the
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Fig. 1. Reference element.
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