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a b s t r a c t

With the aid of the elastic–viscoelastic correspondence principle, the boundary element developed for

the linear anisotropic elastic solids can be applied directly to the linear anisotropic viscoelastic solids in

the Laplace domain. Green’s functions for the problems of two-dimensional linear anisotropic elastic

solids containing holes, cracks, inclusions, or interfaces have been obtained analytically using Stroh’s

complex variable formalism. Through the use of these Green’s functions and the correspondence

principle, special boundary elements in the Laplace domain for viscoelastic solids containing holes,

cracks, inclusions, or interfaces are developed in this paper. Subregion technique is employed when

multiple holes, cracks, inclusions, and interfaces exist simultaneously. After obtaining the physical

responses in Laplace domain, their associated values in time domain are calculated by the numerical

inversion of Laplace transform. The main feature of this proposed boundary element is that no meshes

are needed along the boundary of holes, cracks, inclusions and interfaces whose boundary conditions

are satisfied exactly. To show this special feature by comparison with the other numerical methods,

several examples are solved for the linear isotropic viscoelastic materials under plane strain condition.

The results show that the present BEM is really more efficient and accurate for the problems of

viscoelastic solids containing interfaces, holes, cracks, and/or inclusions.

& 2011 Elsevier Ltd. All rights reserved.

1. Introduction

Viscoelastic materials exhibit a time and rate dependence that
is completely absent in the elastic materials. Due to the inclusion
of time as an independent variable, the available exact analytical
solutions have been obtained only for a few simplified problems.
Thus, to study the mechanical behavior of viscoelastic solids, the
numerical approaches such as finite element method (FEM) and
boundary element method (BEM) are normally needed. The main
advantages of BEM are the reduction of the problem dimension by
one and the exact satisfaction of certain boundary conditions for
particular problems if their associated fundamental solutions are
embedded in boundary element formulation. Generally, there are
three different approaches to linear viscoelastic analysis by BEM.
The first formulates a BEM in Laplace transform domain and
obtain the solution in time domain by numerical inversion [1,2].
The second formulates a BEM directly in time domain [3–5].
Although the second approach looks more direct and efficient, but
the lack of fundamental solutions in time domain restricts the
applicability of time domain BEM approach. To combine the

advantages of the previous two approaches, a mixed BEM was
proposed by Schanz [6], which can solve the problem in time
domain but rely on the fundamental solutions in Laplace domain.

Through the use of correspondence principle, the viscoelastic
solids can be effectively treated in Laplace domain. To take
advantage of the available fundamental solutions for the defects
or interfaces in anisotropic elastic materials [7], in this paper we
choose the first approach, i.e., the transformed BEM to treat the
problems of viscoelastic solids containing defects such as holes,
cracks or inclusions, or interfaces. Using the subregion technique
[8], the problems with simultaneous existence of multiple holes,
cracks, inclusions, and interfaces can also be treated without too
much extra works. The main feature of this proposed method is
that no meshes are needed along the boundary of defects and
interfaces whose boundary conditions are satisfied exactly, which
means that the present approach should be more efficient and
accurate. To show this special feature, several examples consider-
ing interfaces, holes, cracks, and/or inclusions are illustrated in
this paper. For the purpose of comparison, some examples are
taken from those treated by the other BEM methods such as a
circular elastic inclusion in an isotropic viscoelastic solid simu-
lated by Kelvin model [9], an elliptical hole in an isotropic
viscoelastic solid simulated by generalized Kelvin model [1],
and a center-cracked plate in an isotropic viscoelastic solid under
plane strain condition [10]. As to the interface problems, the
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comparison is made with the results obtained by the commercial
finite element software ANSYS. To show the applicability to the
problems with multiple holes, cracks, inclusions, and interfaces,
an example for the estimation of effective Young’s modulus of
fiber-reinforced polymers is done and compared with the analy-
tical solutions presented in the literature [11,12]. All these results
show that the present BEM is really efficient and accurate for the
problems of viscoelastic solids containing interfaces, holes, cracks,
and/or inclusions.

2. Linear anisotropic viscoelasticity

In a fixed rectangular coordinate system xi, i¼1,2,3, let ui, sij, and
eij be, respectively, the displacement, stress, and strain. The constitu-
tive laws for the linear anisotropic viscoelastic materials, the strain–
displacement relations for the small deformations, and the equili-
brium equations for static loading conditions can be written as [13]

sijðtÞ ¼ CijklðtÞ
�deklðtÞ, eijðtÞ ¼

1
2 ui,jðtÞþuj,iðtÞ
� �

, sij,jðtÞ ¼ 0, ð2:1Þ

where i,j,k,l¼1,2,3, and the repeated indices imply summation; a
comma stands for differentiation; Cijkl(t) is the elastic stiffness tensor
whose components are also known to be the relaxation functions of
the viscoelastic materials, and the symmetry of stress and strain
imply Cijkl(t)¼Cjikl(t)¼Cijlk(t). In the first equation of (2.1), the notation
of the Stieltjes convolution has been used, i.e.,

CijklðtÞ
�deklðtÞ ¼

Z t

�1

Cijklðt�tÞdeklðtÞ: ð2:2Þ

If the applied strain history begins at t¼0 with a non-zero
initial value, and eij¼0 for to0, (2.2) can be further reduced to

CijklðtÞ
�deklðtÞ ¼ CijklðtÞeklð0Þþ

Z t

0
Cijklðt�tÞ

@eklðtÞ
@t dt: ð2:3Þ

Taking the Laplace transform of (2.1) gives

�s ijðsÞ ¼ s �C ijklðsÞ�eklðsÞ, �eijðsÞ ¼
1
2
�ui,jðsÞþ �uj,iðsÞ
� �

, �s ij,jðsÞ ¼ 0, ð2:4Þ

where s is the transform variable and the Laplace transform �f ðsÞ of
f(t) is defined as

�f ðsÞ ¼

Z 1
0

f ðtÞe�stdt: ð2:5Þ

Eq. (2.4) is identical to the basic equations of linear anisotropic
elasticity, which means that the viscoelastic solutions in the
Laplace transform domain can be obtained directly from the
solutions of the corresponding elastic problems with the replace-
ment of the elastic stiffness tensor Cijkl by s �C ijklðsÞ, if the boundary
of a viscoelastic body is invariant with time. This statement is the
so-called correspondence principle between linear elasticity and
linear viscoelasticity [13,14] and is applicable to anisotropic
viscoelastic materials.

2.1. Stroh formalism for viscoelasticity in Laplace transform domain

By using the correspondence principle and Stroh formalism for
two-dimensional linear anisotropic elasticity [7,15], the general
solutions satisfying the 15 partial differential equations (2.4) can
be written as

�u ¼ 2RefAfðzÞg, �/ ¼ 2RefBfðzÞg, ð2:6aÞ

where

�u ¼

�u1

�u2

�u3

8><
>:

9>=
>;, �/ ¼

�f1

�f2

�f3

8>><
>>:

9>>=
>>;, fðzÞ ¼

f1ðz1Þ

f2ðz2Þ

f3ðz3Þ

8><
>:

9>=
>;, za ¼ x1þmax2,

A¼ a1 a2 a3
� �

, B¼ b1 b2 b3
� �

, ð2:6bÞ

and Re stands for the real part. �u and �/ are the displacement and
stress function vectors in Laplace transform domain, respectively,
and �fi, i¼ 1,2,3 are related to the stresses in Laplace transform
domain by

�s i1 ¼�
�f i,2, �s i2 ¼

�f i,1: ð2:7Þ

f(z) is a function vector composed of three holomorphic complex
functions fa(za), a¼1,2,3, which will be determined by the
satisfaction of boundary conditions. ma and (aa, ba) are the
material eigenvalues and eigenvectors which can be determined
by the following eigenrelations:

Nn¼ mn, ð2:8aÞ

where N is a 6�6 fundamental elasticity matrix and n is a 6�1
column vector defined by

N¼
N1 N2

N3 NT
1

" #
, n¼

a

b

� �
, ð2:8bÞ

and

N1 ¼�T�1RT , N2 ¼ T�1
¼NT

2 , N3 ¼ RT�1RT
�Q ¼NT

3, ð2:8cÞ

where the superscript T denotes the transpose of a matrix. Q, R,
and T are three 3�3 real matrices defined by the elastic constants
as

Qik ¼ s �C i1k1ðsÞ, Rik ¼ s �C i1k2ðsÞ, Tik ¼ s �C i2k2ðsÞ, i,k¼ 1,2,3:

ð2:8dÞ

Although the Laplace parameter s can be a complex variable, in
this paper during the inversion of the Laplace transform only the
function values related to the real-positive parameter s is con-
sidered. In this sense, all the numerical results show that s �C ijkl is
positive definite. Although the rigorous mathematical proof about
the positive definiteness is not provided in this paper, it seems
that it can be proved through the consideration that the strain
energy at every time stage of the viscoelastic solids is always
positive. Thus, with a real-positive Laplace parameter s the
material eigenvalues ma obtained from the eigen-relation (2.8)
cannot be real, and ma occurs as three pairs of complex con-
jugates. In the general solution (2.6), the material eigenvalues ma
and material eigenvectors (aa,ba) have been arranged to be
maþ3 ¼ ma, ImðmaÞ40, and aaþ3 ¼ aa, baþ3 ¼ ba, a¼ 1,2,3, where
an overbar denotes the complex conjugate and Im stands for the
imaginary part. Moreover, in the general solution (2.6), the
material eigenvalues are assumed to be distinct and their asso-
ciated eigenvectors are independent of each other. For the cases
that the material eigenvalues are repeated so that their associated
eigenvectors are not independent of each other, the general
solution (2.6) should be modified or one may introduce a small
perturbation in the values of material properties to avoid the
problem of degeneracy [7,15].

An alternative and more direct way to calculate the material
eigenvalues and eigenvectors is through the following character-
istic equation [7,15,16]

l4ðmÞl2ðmÞ�l3
2
ðmÞ ¼ 0, ð2:9aÞ

where

l2ðmÞ ¼ mq5�q4, l3ðmÞ ¼ m2q2þq2�mq6,

l4ðmÞ ¼ m2p1þp2�mp6, ð2:9bÞ

and

pjðmÞ ¼ s½m2 �S
r

j1þ
�S

r

j2�m �S
r

j6� , qjðmÞ ¼ s½m �S
r

j5�
�S

r

j4�,

j¼ 1,2,4,5,6: ð2:9cÞ
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