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The method of fundamental solutions (MFS) is now a well-established technique that has proved to be
reliable for a specific range of wave problems such as the scattering of acoustic and elastic waves by
obstacles and inclusions of regular shapes. The goal of this study is to show that the technique can be
extended to solve transmission problems whereby an incident acoustic pressure wave impinges on a
poroelastic material of finite dimension. For homogeneous and isotropic materials, the wave equations
for the fluid phase and solid phase displacements can be decoupled thanks to the Helmholtz
decomposition. This allows for a simple and systematic way to construct fundamental solutions for
describing the wave displacement field in the material. The efficiency of the technique relies on
choosing an appropriate set of fundamental solutions as well as properly imposing the transmission
conditions at the air-porous interface. In this paper, we address this issue showing results involving
bidimensional scatterers of various shapes. In particular, it is shown that reliable error indicators can be
used to assess the quality of the results. Comparisons with results computed using a mixed pressure—
displacement finite element formulation illustrate the great advantages of the MFS both in terms of
computational resources and mesh preparation. The extension of the method for dealing with the

scattering by an infinite array of periodic scatterers is also presented.

© 2011 Elsevier Ltd. All rights reserved.

1. Introduction

Poroelastic materials are often used for their good sound
absorbing capabilities in the middle and high frequency range.
Typical applications can be found in the context of the transport
noise reduction or to enhance the quality of room acoustics. The
description of wave propagation in porous media is not limited to
audible acoustics as Biot’s model [8] was originally developed for
geological applications. Because of their inherent diphasic
features and the strong contrasts that may exist between the
solid and the fluid phases, wave propagation modeling remains a
difficult task often leading to heavy computational costs. In the
context of the finite element method (FEM), some developments
have been proposed using Lagrange or hierarchical finite
elements [5,29,18]. Because of the scale disparity, the so-called
poroelastic elements have a slower convergence rate than purely
elastic or fluid elements [29]. To make matters worse, Biot’s
equations are frequency dependent and large FEM system
matrices have to be recalculated for each frequency. For homo-
geneous and isotropic materials, the boundary element method
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(BEM) offers an alternative [31]. The method has the advantage of
reducing the entire problem to one with only unknowns on the
boundaries. However, the system matrix is full and there is still
the need to discretize the boundary surface as well as performing
regular and singular integrations over each boundary element.

In the past decade, several researchers have focused their work
on meshless methods in order to avoid the time-consuming mesh
generation process for complicated geometries. In this regard, the
method of fundamental solution (MFS) has been shown to be
efficient for solving a large variety of physical problems as long as
a fundamental solution of the underlying differential equation(s) is
known. In particular, the MFS is suitable for scattering problems by
choosing appropriate fundamental solutions satisfying the radiation
condition at infinity. The method shares the same advantages as the
BEM over domain discretization methods because there is no need
to create a mesh over the entire domain. Furthermore, as no
integration is needed, some numerical difficulties encountered with
the BEM are avoided. For comprehensive reviews on applications of
the MFS for scattering and radiation problems one can refer to
Fairweather et al. [13,14].

In this work, we are interested in applying as well as assessing
the MFS for the numerical simulation of a bidimensional incident
acoustic wave scattered by a poroelastic material. To the authors’
knowledge, such problems have never been addressed using the
MFS and although analytical solutions are available for canonical
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geometries such as cylindrical and spherical scatterers [15,16],
there is a need for fast and accurate methods taking into account
scatterers of arbitrary shape. The applications we have in mind
range from multiple scattering, the modeling of double porosity
materials [6,26] to shape foam optimization modeling [19,30].

In a preliminary note presented by the authors [25], the
application of the MFS to such problems was briefly presented.
In this work, all the details of the implementation of the method
and the investigation of its accuracy and numerical characteris-
tics, including the condition number of the resulting matrices are
given. The present paper is organized as follows. After presenting
the MFS formulation in Section 2, the method’s performance is
measured with respect to an academic problem, the circular-
shaped scatterer, for which analytical solutions are available. In
particular, it is shown that reliable error indicators can be used to
assess the quality of the results. In Section 4, various numerical
examples of increasing difficulty are presented with a comparison
to FEM results. The last section shows applications concerning the
scattering of an incident plane wave by an infinite periodic array
of porous structures.

2. Formulation of the method

Consider a time-harmonic acoustic plane wave @€ =Anc
exp ikol - x (with the convention e~®!) in an unbounded exterior
domain ° incident upon one (or more) poroelastic acoustic
foam(s) denoted by Q' with boundary I as shown in Fig. 1. We
denote by n, the unit outward normal vector to . In the surrounding
acoustic domain Q°, the fluid is inviscid and the acoustic displace-
ment potential ¢, obeys the wave equation

A@y+K3py=0. (1

Here, ko = w/cy is the classical wavenumber defined as the ratio of
the angular frequency w and the sound speed cy. To express the
transmission conditions at the interface I', it is convenient to
introduce the particle displacement perturbation w = V¢,,. With this
definition, the acoustic pressure is obtained from the linearized
momentum equation as p = po®?@,. In (1), it is natural to split the
potential into an incident and a scattered part as ¢, = @I+ ¢ (and
similarly for the pressure and displacement). Here we require the
scattered field to satisfy the usual Sommerfeld radiation condition at
infinity. In the poroelastic medium the acoustic waves propagation is
described by Biot’'s model [8]. This latter is based on the superposition
of a fluid phase and a solid phase which are coupled together and
respectively described by the fluid phase displacement U and the
solid phase displacement u. For the time-harmonic representation,
we have the following coupled system [8]:

V. 6*+w?(p;u+p;,U) =0, )

V-6 +@?(prpu+ppU) =0. 3)

Fig. 1. Scattering geometry.

The solid and fluid phase stress tensors are given by
6*=(AV-u+QV . U)JI+2N¢, (4a)

o/ =(QV -u+RV-U), (4b)

where & =1/2(Vu+(Vu)") is the usual strain tensor and I is the
identity matrix. The total stress tensor & is, by definition, the sum of
o/ and o°. Biot'’s coefficients A,N,Q,R are related to the material
properties by the Allard-Johnson model. Their expressions can be
found in the literature or in the reference textbook [2] as well as the
other quantities introduced in this section. These quantities are all
complex and frequency-dependent, A and N correspond to the Lamé
coefficients, R is the effective bulk modulus of the fluid phase and Q
indicates the coupling of the two phases volumic dilatation. The
imaginary parts of A and N include the structural damping and, in Q
and R these parts include the thermal dissipation. The imaginary parts
of the effective density coefficients p,;, p5, and p;, take into account
viscous damping. The complete solution to the problem is found after
applying the classical air-porous transmission conditions [11,22] on
the interface I, i.e.

ppipsc :pinc' (5a)
U -n+(1—p)u-n—w* . n=w" . n, (5b)
O.tn_|_pscn _ _pincn' (50)

Here ¢ is the porosity and the pore pressure pj, is obtained from the
fluid phase tensor as —I¢pp =o'.

For homogeneous and isotropic materials, the wave equation
for the fluid phase and solid phase displacements can be
decoupled thanks to the Helmholtz decomposition. Both solid
and fluid displacement fields are then written as

u=V@p+VA(p;-e3) and U=Vy+Va(O -e;3). (6)
After decoupling the equations, we have [2]: ¢ =¢,+¢, and
% =M@+l ¢, Where

_ Pli-a?py,
B wzpu_le?'
are the wave amplitude ratios between the two phases in the
porous material (here, P=A+2N). Similarly, the potential @ is

simply obtained as © = u;@; with u; = p;,/p5,. Under this form,
each potential ¢; (i=1,2,3) satisfies the Helmholtz equation

A@;+kip; =0, ®)

and the associated complex wavenumbers are
2

i=12 (7)

i

ki = 42(PR—Q2)'(PPZZ +Rp1,-2Qp1,+VD), ®
2 w?
kZ = 2(PR_Q2)(Pp22 +Rp11_2Qp12_\/5)' (]O)
2 2
=9 <P11Pzz*plz>' 11
3 N P22 (h

Here, D stands for the discriminant of a quadratic equation
and D = (Pp,, +Rp11—2Qp15)* —4(PR—Q?)(p11 P22 —P3,)- Physically,
there are two compressional waves associated with ¢,,¢, and
one rotational (shear) wave associated with ¢;. They all propagate
in the two phases and their relative contributions are given by the
coefficients ;. If such a decomposition holds in elastodynamics,
the coexistence of two phases in the poroelastic media adds
another fluid-borne compressional wave which is not present is
elastic solids.

The MFS implementation starts by choosing an appropriate set
of fundamental solutions for both propagative domains Q° and Q'.
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