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This paper presents a new iterative integral approach for solving semilinear equations. The integral

formulation is derived based on the generalized quasilinearization theory in which nonlinear equations

are replaced by a set of iterative linear equations. An advantage of the new formulation is that its

convergence is guaranteed under a given condition and the convergence rate can be quadratic. The

effectiveness of the new approach has been demonstrated on several examples of the nonlinear Poisson

type. Comparisons with some existing methods and a study of the convergence rate have also been

conducted in this work.

& 2010 Elsevier Ltd. All rights reserved.

1. Introduction

The boundary element method has established itself as one of
the most powerful numerical methods for solving various linear
problems. Extension to nonlinear problems has been actively
pursued due to the advantages that integral-based approaches
can offer. A common treatment of the nonlinear term is to regard
it as a ‘‘pseudo’’ body force and the integral formulation is formed
based on the fundamental solution of the linear operator of the
equation. As such, a volume integral containing the nonlinear
term inevitably results. Various methods, such as domain
discretization free methods [1–6], and cell-based direct integra-
tion schemes [7–10], have been proposed and developed to
efficiently and accurately evaluate volume integrals. In the first
category of the methods, volume integrals are either eliminated
using a particular solution if it is available [1,2], or are trans-
formed into boundary integrals using interpolation based on
radial basis functions as in, for example, the dual reciprocity
method (DRM) [3,4] and the multiple-reciprocity method (MRM)
[5], or using sub-domain quasilinearization as in the quasilinear
boundary element method (QBEM) [6]. The second class of the
methods uses volume cells to directly evaluate the nonlinear
volume integrals. Efforts have been focused on efficient cell
generation. Methods such as the auxiliary domain subtraction
method [7,8] and the grid-based integral approach [9,10] have

been developed. In [11], a brief review and a comparison of some
aforementioned methods are presented.

Due to the nonlinear nature of the problem, an iterative
scheme must be adopted at a certain stage during the problem
solving process, independent of the method employed (except for
the particular solution method). A popular iterative scheme is the
direct successive-substitution method, which is essentially a
variation of the Picard iteration method. In this method, an initial
guess of the unknown function is assumed at the beginning of the
iteration and the nonlinear term, in an integral form, is evaluated
based on the assumed value. The unknown function is then
updated by solving the corresponding linear equation. The
convergence of this method depends on the level of nonlinearity
as well as the choice of the initial guess. Often, for problems with
severe nonlinearity this method fails to converge. To achieve a
better convergence, an implicit scheme can be adopted in which
the unknown quantities at the boundary nodes and interior nodes
are solved simultaneously, usually by the Newton–Raphson
method. The drawback of this method is that additional equations
must be supplied in order to close the system, which leads to a
much larger discretized system. In addition, although the
convergence of this approach in general is better than the direct
successive-substitution scheme, it is nevertheless still not
guaranteed. In this paper a different iterative scheme is employed
and a corresponding integral formulation is derived with the aim
of achieving a fast convergence rate without the need of
increasing the size of the discretized system. This scheme is
based on the generalized quasilinearization theory [12,13]. Under
certain circumferences, a quadratic convergence rate is guaran-
teed even when the nonlinearity is severe.
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The paper is organized as follows. A brief review of the classical
boundary element method (BEM) and the dual reciprocity
boundary element method (DRBEM) for solving semilinear equa-
tions using the direct successive-substitutive scheme is presented
first, followed by the description of the new iterative integral
formulation and its connection with the generalized quasilinear-
ization theory. Results are then presented to demonstrate the
effectiveness of the formulation through several illustrative
examples together with a comparison with some other methods.
In Section 4, the convergence rate of the formulation is discussed
and conclusions are given in the last section.

2. Methodologies

Without losing generality, the nonlinear Poisson equation
shown in Eq. (1) is chosen as an illustrative example of the
semilinear equations considered in this work

r2u¼ f ðx,uÞ, uAO
Bu¼f, uA@O

, ð1Þ

where u is the unknown function, x is the spatial variable and O is
the problem domain. The boundary condition is described by
Bu¼p(x)u+q(x)(@u/@n)¼f with n being the outward normal of the
boundary qO and p and q are two general funtions of x.

2.1. Review of some existing integral-based approaches: the classical

BEM and the DRBEM

In a classical boundary element approach for solving Eq. (1),
the integral representation is formulated using the fundamental
solution of the Laplace operator as
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where c(n) is the self-term, defined as cðnÞ ¼

1, nAO
0, n=2ðO [ @OÞ
a, nA@O
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and the second integral should be interpreted in the sense of

Cauchy Principal Value when n is on the boundary. In Eq. (2), n(x)

is the unit outward normal vector at the field point x, n is the

evaluation/source point and G(x, n) is the Green’s function of the
Laplace operator. The volume integral at the right-hand side of
Eq. (2) involves the unknown function u at the interior of the domain.
Applying the direct successive-substitution method, an iterative
scheme is constructed as

cðnÞuðmþ1ÞðnÞþ
Z
@O

@Gðx,nÞ
@nðxÞ

uðmþ1ÞðxÞdSðxÞ�

Z
@O

Gðx,nÞ
@uðmþ1ÞðxÞ

@nðxÞ
dSðxÞ

¼�

Z
O

Gðx,nÞf ðuðmÞðxÞ,xÞdVðxÞ, m¼ 0,1,2, � � � , ð3Þ

with u(0) being the initial guess. The iteration terminates when
the difference in u between two consecutive iterations is smaller
than a pre-set tolerance.

In the dual reciprocity boundary element approach, the
nonlinear term f is first approximated by a set of radial basis
functions, fk(x), which are chosen so that functions gk(x)
satisfying r2gk¼fk can be found. The interpolation reads

f ðu,xÞ �
XNT

k ¼ 1

akfk, ð4Þ

where ak is the interpolation coefficient and NT is the total
number of interpolation nodes including both boundary and

interior nodes. The nonlinear Poisson equation is then approxi-
mated as

r
2u�
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akr
2gk, ð5Þ

and is solved using the standard boundary element method with
the integral formulation shown as
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Note the interpolation coefficient ak depends on u at each
node, more specifically ak ¼

PNT
l ¼ 1 Pklf ðul,xlÞ, where P is the

interpolation matrix and l denotes the l-th interpolation node.
The application of the direct successive-substitution method
results in the following iterative scheme:
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2.2. New iterative integral formulation

The final iterative equations, Eq. (3) and (7), derived from the
classical BEM and the DRBEM, respectively, are in fact two
different schemes for solving the following set of linear equations

r
2uðmþ1Þ ¼ f ðx,uðmÞÞ, m¼ 0,1,2, � � �

Buðmþ1Þ ¼f: ð8Þ

This is essentially a variation of the Picard method for solving
the original nonlinear Poisson equation. It is well known that the
convergence of Eq. (8) is not guaranteed. It depends on the level of
nonlinearity as well as the initial guess. A numerical example will
be illustrated in Section 3.

A similar set of linear equations but with a better convergence
can be constructed based on the generalized quasilinearization
theory proposed by Bellman and Kalaba [12] and later further
developed by Lakshmikantham and Koksal [13]. It reads

r2uðmþ1Þ�
@f

@u

�����
uðmÞ

Uuðmþ1Þ ¼ f ðx,uðmÞÞ�
@f

@u

�����
uðmÞ

UuðmÞ

Buðmþ1Þ ¼f m¼ 0,1,2, � � � : ð9Þ

The advantage of this set of iterative equations is that under
certain conditions, the sequence {u(m)} obtained from Eq. (9)
converges to the solution of the original nonlinear Poisson equation,
r2u¼ f(x,u), monotonically for a wide range of initial guesses and
the convergence is quadratic. For example, if q2f/qu2

Z0, the
sequence of {u(m)} defined in Eq. (9) converges for any initial guess
satisfying r2u(0)rf(x,u(0)) and Bu(0)

Zf. If q2f/qu2r0, the sequence
of {u(m)} converges for any initial guess satisfying r2u(0)

Zf(x,u(0))
and Bu(0)rf. In both cases, the convergence rate is quadratic. In
cases when f is neither a convex nor a concave function of u, it is
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