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a b s t r a c t

In this paper, a boundary element method is developed for solving the problems of 2D solids with fluid-

filled pores. The solid is assumed as linear elastic, which contains many fluid-filled pores of various

shapes, and the fluid filling the pores is assumed to be linear compressible. Two different approaches,

named superposition method and multi-subdomain method have been presented. The first one is based

on the principle of superposition, in which all the pressures in the fluid-filled pores will be determined

first, and then all the other boundary unknowns can be computed. In the other approach, the

subdomains of the fluid in pores are solved to obtain the relation of the interface displacements with

the interface pressure first, and then all the boundary unknowns, including the fluid pressure in each

pore, can be solved simultaneously. Two simple examples of the 2D solids containing one circular fluid-

filled pore are applied to verify the accuracy and to show the efficiency of the presented methods. And

then, the effective elastic modulus and effective Poisson’s ratio are simulated based on several models

of the 2D solids containing 100 randomly distributed circular or elliptical fluid-filled pores. The

numerical results computed by the two schemes have nearly the same accuracy, whereas the multi-

subdomain method has higher computational efficiency than the superposition method. Some

differences between the results obtained by the BEM and those given by Kachanov’s method in the

literature have been observed, which will be further investigated in the future work.

& 2010 Elsevier Ltd. All rights reserved.

1. Introduction

There are a variety of porous media in the nature, such as
rocks, soil, polymer foams, metal foams, concrete foams, sponges
and biological tissues, some of which are fully saturated, some are
partially saturated and some are dry ones. In most porous media,
the fluid in pores can flow from one pore to the others. The fluid in
different pores is isolated in some cases of the porous media,
which can be modelled as solid with numerous fluid-filled pores.
The mechanical properties of such porous media will be affected
to a certain extent by the shapes, sizes and microstructures of the
pores. The investigation on the effective elastic properties of such
porous media has attracted considerable interests in the research
of solid mechanics.

O’Connell and Budiansky [1,2] investigated the effective elastic
properties of materials with fluid-filled pores in the special case
of pores’ geometry—narrow, crack-like cavities, whereas the
applicability of their results is limited by the implicit assumption
that all cavities have the same aspect ratios. The polarization
phenomenon of fluid pressure induced by the applied load was

addressed by Zimmerman [3], assuming that the porous space is
interconnected together. Kachanov [4] considered an arbitrary
orientational distribution of narrow crack-like cavities and
examined the fluid pressure polarization as well as the impact
of fluid on stress interactions on cracks. Shafiro and Kachanov
[5,6] presented a general 3D analysis that covers fluid-filled
pores of arbitrary ellipsoidal shapes, in particular, mixtures of
cavities of diverse shapes, including pores and cracks. Besides,
Giraud and Huynh [7] applied the Eshelby tensor to determine
the effective poroelastic properties of anisotropic rocks-like
composites.

Although much research has been done on the effective elastic
properties of fluid-saturated porous media, most of them are
based on the analytical methods, in which some specific
assumptions or limitations usually had to be adopted. Only few
research works have been reported to examine the effective
elastic properties of materials with fluid-filled pores by numerical
methods, especially by the boundary element method. Since the
boundary element method only needs the boundary discretiza-
tion, it has obvious advantages over other numerical methods for
various elastic problems containing numerous cracks or inclu-
sions [8–13]. The main purpose of this paper is to develop the
boundary element method for the problems of 2D solid with fluid-
filled pores, and to simulate the equivalent mechanic behaviors of
such materials.
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2. Formulation of 2D solids with fluid-filled pores

2.1. Description of the problem

A 2D solid containing n randomly distributed fluid-filled pores
of arbitrary shapes is considered as shown in Fig. 1, where O and
G denote the solid domain and its outer boundary, O1, O2, y, Oi,
y, On denote the fluid-filled pores, and G1, G2, y, Gi, y, Gn

denote their boundaries, which can also be considered as the
interfaces of the solid and fluid, whereas Gt and Gu indicate the
given traction part and the given displacement part of the outer
boundary, respectively.

When the external loads are applied on the boundary G, the
deformation of the solid and the pressure of the fluid in pores will
interact with each other on their interfaces, thus this problem can
be regarded as a typical fluid–solid interaction problem. In this
paper, the fluid-filled in the pores is assumed to be linear
nonviscous and compressible. The fluid inside the i-th pore
satisfies

�DSi=SðiÞ ¼ kðiÞpi ði¼ 1, . . ., nÞ ð1Þ

where S(i), DSi, k(i) and pi stand for the area, the area variation, the
compressibility and the pressure variation of the fluid filled in the
i-th pore, respectively.

If the fluid inside the i-th pore is incompressible, i.e. k(i)
¼0, the

area of each pore will keep constant, but its shape will be
changeable.

It should be mentioned that, although the fluid pressure, pi,
in each pore is constant, they are different for different pores.
Therefore, how to determine all these pressures in the fluid-filled
pores is of most importance for solving such problems. Once the
pressures in the fluid-filled pores are determined, the problem is
transformed into a typical boundary value problem of elastic
solid, which can be solved easily.

2.2. Formulation of the BEM for the 2D elastic solid [14,15]

It is well-known that the boundary integral equation for
the elastic problem can be derived from the Betti’s reciprocal
theorem and Kelvin’s solution. The Somigliana’s identity for the
linear elastic plane strain problem in a multiply connected region,
as shown in Fig. 1 can be written as

uaðPÞ ¼

Z
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P
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where P and q stand for the source point in the domain and the
field point on the boundary, ub(q), tb(q) and ua(P) denote
the displacements and tractions at the boundary point q and the
displacement at the source point P, U�abðP; qÞ and T�abðP; qÞ are the
displacement and traction fundamental solution, respectively. For

the plane strain problem, the Kelvin’s fundamental solutions can
be written as
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where r is the distance from the source point P to the field point q.
As the source point P approaches to the boundary point p, the

well-known boundary integral equation can be derived as

cabðpÞubðpÞ ¼
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where cab is a free term, which depends on the geometry of
boundary at the source point p, and if the boundary is smooth at
the point p, then cab¼1/2dab.

In the procedure of boundary element method, the boundary G
of the domain O, together with the inner boundary Gi, should be
discretized into boundary elements, the boundary variables are
discretized, and correspondingly the boundary integral equations
are discretized into a system of algebraic equations, which can be
written in the matrix form, namely

Hu¼Gt ð6Þ

where u and t are the vectors containing all the nodal values of
displacements and tractions, respectively, H and G are the
corresponding coefficient matrices, which are obtained by the
integration of the product of fundamental solution and shape
function over the boundary elements. By using the boundary
conditions and shifting the unknown variables to the left hand
side and the known ones to the right hand side, the resulted
equation system is a typical system of algebraic equation

Ax¼ c ð7Þ

3. Two approaches for solving 2D solids with fluid-filled pores

In this section, two approaches are presented for solving the
2D solid with fluid-filled pores. The first approach deals with the
solids of multiply connected domain under the unknown fluid
pressure on the inner boundary of pores, the deformations
resulted by external load and the unit fluid pressure subjected
at each individual pore are solved independently, and then
superposed to satisfy the constitutive law of the fluid (Eq. (1))
in each pore, and in this way the fluid pressures are determined
first, and then the final solution can be found. Therefore, it can be
named as the superposition method. Another approach deals with
a multi-subdomain problem, one multiply connected subdomain
of solid and n subdomains of fluid inclusion. The numerical
method for the simulation of solids with multi-inclusions is
generalized to solve such problems. The variables of the fluid
subdomain are condensed into the interface conditions of the
solid subdomain. Then the final solution can be found directly by
solving the BE equations of the multiply connected solid
subdomain. This approach can be named as multi-subdomain
method.

3.1. Superposition method

In this approach, it is dealt with the solid of multiply
connected domain under the unknown fluid pressure on theFig. 1. Model of a 2D solid with fluid-filled pores.
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