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a b s t r a c t

We investigate an application of the method of fundamental solutions (MFS) to the time-dependent

two-dimensional Cauchy heat conduction problem, which is an inverse ill-posed problem. Data in

the form of the solution and its normal derivative is given on a part of the boundary and no data

is prescribed on the remaining part of the boundary of the solution domain. To generate a numerical

approximation we generalize the work for the stationary case in Marin (2011) [23] to the time-

dependent setting building on the MFS proposed in Johansson and Lesnic (2008) [15], for the one-

dimensional heat conduction problem. We incorporate Tikhonov regularization to obtain stable results.

The proposed approach is flexible and can be adjusted rather easily to various solution domains and

data. An additional advantage is that the initial data does not need to be known a priori, but can be

reconstructed as well.

& 2013 Elsevier Ltd. All rights reserved.

1. Introduction

The Cauchy problem is a classical inverse problem, where
temperature and normal heat flux data is missing from a part of
the boundary, and is recovered from data overspecified on the
remaining part of the boundary. For this Cauchy problem we
assume that the boundary shape is known (including the part of
the boundary with missing data), and thermal diffusivities, con-
ductivities, etc. are also known. The problem is ill-posed in the
Hadamard sense, see [11], since even if a solution exists it will
not depend continuously on the given data. Due to the lack
of continuous dependence, regularization is required to obtain
stable numerical results.

To solve the above Cauchy problem we apply the method
of fundamental solutions (MFS) which is applicable when the
fundamental solution of the homogeneous partial differential
equation (PDE) governing the problem in question is known. The
MFS is a collocation method and therefore has advantages due
to its relative simplicity and being computationally inexpensive
compared to methods which require mesh generation in the
solution domain (FEM and FDM) or numerical integration over
the boundary (BEM). The MFS was introduced as a numerical
method by Mathon and Johnston in [25], and over recent decades
has become increasingly popular for both direct and inverse
problems, see the survey papers [8,9,20] for details. The MFS has

been primarily applied to elliptic PDEs, see [2,4], and it has also
been applied to Cauchy problems for Helmholtz-type equations in
[24] and recently to steady-state heat conduction Cauchy problems
in [23]. In [23] it was demonstrated that the MFS worked well and
was easy to adjust to various solution domains. Thus it is natural to
extend [23] to the time-dependent setting. In [15] the MFS was
applied to the one-dimensional heat conduction problem, and
we extend this work to the application of the MFS for the two-
dimensional time-dependent Cauchy heat conduction problem, for
which, to the best of the authors’ knowledge, there are consider-
ably fewer results than in the stationary case. We note that various
formulations of the MFS for the parabolic heat equation have been
given in [5,10,22,30,33], note though that for those there are in
general no denseness results available for the approximation.

We start the work in Section 2 by stating the notation that will
be used in the paper and give a mathematical formulation of the
problem. In Section 3, we construct the MFS solution and give
details of its implementation and Tikhonov regularization. In
Section 4, we present numerical results for different domains
(including rectangular, epitrochoidal and teardrop shaped
domains) and various solutions (including examples with singular
functions and with no analytic solution) as well as noisy
boundary data.

2. Mathematical formulation of the Cauchy problem

Let x¼ ðx1,x2ÞAR2, D be a two-dimensional heat conducting
body, with piecewise smooth boundary G, and closure D ¼D [ G:
For T40 is a fixed real number, then the extensions of the
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domain D and boundary G in time are given by DT ¼D� ð0,T�, and
GT � ð0,T�. Let Gð1Þ be an open arc of G and put Gð2Þ ¼G\Gð1Þ .
Define GðiÞT ¼GðiÞ � ð0,T�, i¼ 1,2: We assume that Cauchy data is
given on Gð1ÞT . Let, as usual, r¼ ð@x1

,@x2
Þ and D¼ @2

x1
þ@2

x2
.

We wish to construct an approximation for the solution of the
heat equation u, endowed with Dirichlet and Neumann conditions
on the boundary Gð1ÞT , i.e. to find an approximation to

@u

@t
ðx,tÞ ¼Duðx,tÞ, ðx,tÞADT , ð1Þ

uðx,tÞ ¼ g1ðx,tÞ, ðx,tÞAGð1ÞT , ð2Þ

@u

@m
ðx,tÞ ¼ g2ðx,tÞ, ðx,tÞAGð1ÞT , ð3Þ

where m is the outward unit normal to the boundary G, and
@u=@m ¼ru � m, and g1 and g2 are sufficiently smooth functions.
We refer to the Dirichlet data in (2) as the temperature, and
the Neumann data in (3) as the outward heat flux. Note that no
initial condition is prescribed. The uniqueness of a solution is still
guaranteed as is well known and explained in the sequel.
Although it is known that initial data is not required for Cauchy
problems for the heat equation, almost all numerical examples in
the literature do have initial data imposed. It is noteworthy that
with the MFS it is easy to work with or without this data.

For smooth Cauchy data given on a non-characteristic smooth
curve (or surface in three-dimensions) uniqueness of a solution to the
heat equation with this data is a consequence of Holmgren’s theorem
[13]. More general results, for example for non-characteristic Cauchy
problems and also for the closely connected problem of unique
continuation, have been presented in various function classes and
solution domains. We do not aim to give an overview of these results
and refer instead to two more recent papers which contain overviews
of some of these [29,31]. In our situation with the smoothness
imposed on the data and on the solution domain we can thus be
certain that there can be at most one solution to the Cauchy problem.
We shall assume that data is such that there exists a solution. Note
though that this solution will not depend continuously on the data
due to the ill-posedness of the Cauchy problem.

3. The MFS for the 2D heat conduction Cauchy problem

In this section, we construct an approximate solution to
(1)–(3) using the MFS. To do this we need to make use of the
fundamental solution of the two-dimensional heat equation (1),
given by

Fðx,t; y,tÞ ¼ Hðt�tÞ
4pðt�tÞ

exp �
9x�y92

4ðt�tÞ

 !
, ð4Þ

having partial derivative with respect to x1 and x2, given by

@F

@xj
ðx,t; y,tÞ ¼� Hðt�tÞ

8pðt�tÞ2
ðxj�yjÞ exp �

9x�y92

4ðt�tÞ

 !
, j¼ 1,2; ð5Þ

where H is the Heaviside function.

Fig. 2. Representation of a solution domain and the location of Cauchy data (—)

on Gð1ÞT , unknown boundary data (?) on Gð2ÞT , and the source points (� ) on GE .

Fig. 3. Representation of the rectangular domain, Cauchy data points ð�Þ on Gð1Þ ,
the unknown boundary data (?) on Gð2Þ , and the source points (� ).

Fig. 4. (a) The temperature, (b) the MFS approximation and (c) the absolute error for x2¼0.5, ðx1 ,tÞ ¼ ð�1,1Þ � ð0,1�, obtained with l¼ 10�14, no noise p1 ¼ p2 ¼ 0, when

Cauchy data is given along x2 ¼�0:5, ðx1 ,tÞ ¼ ð�1,1Þ � ð0,1�, for Example 1.

Fig. 1. Representation of the placement of collocation and source points in time

ðM1 ¼M ¼ 5Þ.
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