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This work presents the application of meshless local Petrov-Galerkin (MLPG) method to two
dimensional coupled non-Fick diffusion-elasticity analysis. A unit step function is used as the test
functions in the local weak-form. It leads to local integral equations (LIEs). The analyzed domain is
divided into small subdomains with a circular shape. The radial basis functions are used for
approximation of the spatial variation of field variables. For treatment of time variations, the
Laplace-transform technique is utilized. Several numerical examples are given to verify the accuracy
and the efficiency of the proposed method. The molar concentration diffuses through 2D domain with a
finite speed similar to elastic wave. The propagation of mass diffusion and elastic waves are obtained
and discussed at various time instants. The MLPG method has a high capability to track the diffusion
and elastic wave fronts at arbitrary time instants in 2D domain. The profiles of molar concentration and
displacements in two orthogonal directions are illustrated at various time instants.

© 2013 Elsevier Ltd. All rights reserved.

1. Introduction

From engineering perspective, one of the most important pro-
blems in mass transfer problems is diffusion of mass in solids such
as diffusion of a gas in the metal. To have a realistic simulation for
diffusion of gas in solids, the interaction between diffusion and
elasticity should be considered in models used for calculations.
Some models including diffusion, elasticity and temperature effects
have been published in literature. The non-Fick effects on steady-
state and transient mass diffusion were studied by Jiang and Liu [1]
for various boundary and initial conditions. Ellery and Simpson [2]
presented an analytical approach to study nonlinear reactive trans-
port models. An exact analytical solution was presented by Magyari
[3,4] for analysis of linear or nonlinear reaction-diffusion in porous
catalysts. Sun et al. [5] studied on diffusion and reaction in porous
catalysts by the decomposition method and nonlinear model as an
approximate solution. In another work, Abbasbandy [6] presented
other approximate solution for the nonlinear model diffusion and
reaction in porous catalysts by means of the homotopy analysis
method. By introducing coupling between diffusion and elasticity,
Gorsky [7] analyzed the interaction of diffusion and stresses. Peter
and Smith [8] discussed the influence of advective transport on
coupled chemical and mechanical consolidation of clays. Based on
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some of experimental works in micro- and nano-scales [9], it can be
concluded that the diffusion of mass appears with a finite speed.
Consequently, the non-Fick effects should be considered in calcula-
tions using coupled diffusion-elasticity based on non-Fick theories
[10,11]. Recently, Suo and Shen [12] derived the exact variational
principles for dynamical theoretical model and variational principles
for coupled temperature-diffusion-mechanics with some numerical
examples in which the molar concentration propagates with a
finite speed.

Although the analytical methods are very valuable even for
coupled problems in engineering (for example coupled thermo-
elasticity problem [13]), some numerical methods such as finite
element (FE) and boundary element (BE) methods have been
successfully developed in this area of engineering because of
mathematical limitations of analytical methods. In spite of the
great success of the finite element and boundary element meth-
ods as the most efficient numerical tools for the solution of
coupled problems [14] in complex domains, there has been a
growing interest in the so-called meshless of mesh-free methods
over the past decade. One of the most efficient meshless techni-
ques is the meshless local Petrov-Galerkin (MLPG) method
[16-19]. Recently, the authors employed this method successfully
for coupled thermoelasticity analysis [20] and nonlinear diffusion
equations [21]. Considering uncertainty in mechanical properties,
the stochastic MLPG method was developed for coupled thermo-
elasticity analysis by Hosseini et al. [22].

In the present paper, the authors have extended a meshless
method based on the local Petrov-Galerkin weak form to coupled
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non-Fick diffusion-elasticity problem. In our meshless method,
nodal points are regularly and/or randomly distributed over the
2D domain. Each node is the center of a circle surrounding this
node. The Laplace-transform technique is applied to the set of
coupled governing equations for the 2D non-Fick diffusion-
elasticity in order to eliminate the time variable temporarily.
Then, the unknown Laplace-transforms of the relevant physical
quantities are constrained by the prescribed boundary conditions
and the local integral equations developed as the weak form of
the governing equations on local subdomains. Two kinds of shock
loading are considered to illustrate the applicability of the
proposed method. The profiles of 2D propagation of molar
concentration and displacements waves are obtained at various
time instants.

2. Mathematical formulations

The governing equations of coupled non-Fick diffusion-elasticity
are given as [11,12]
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where f;, p, u;, u@, I and ¢y are the body force, mass density,
displacement, inertia chemical potential, diffusion source term and
reference concentration, respectively. The constitutive equations can
be found as

gij = Cija&r— i€ 3)
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where oy, &;, ¢ and u are the stress, strain, molar concentration
(mol/m3) and chemical potential (J/mol), respectively. The term J; is
the diffusion flux (mol/(mm?s)), which is given by the following
equation (Fick’s law) for isotropic and homogenous material
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with Dy being the diffusion coefficient. Furthermore, 1@ is assumed
to be proportional to the rate of the concentration that is

WO = (6)

where y is a proportionality coefficient. The term g’ is equal to RT,
with R being the universal gas constant and T is the absolute
temperature. The relationship between 8’ and f is

= E/ (7)
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In this work, the body force and diffusion source terms are
neglected, thus, we have

gjj = Pl 8)
or
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For isotropic and homogenous materials, the elasticity tensor
and material coefficients o;; become
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Applying the Laplace transformation to the constitutive and
governing equations, we obtain
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and
Gij(X.S) = pS*Wi(X,S)— pSui(X,0)— piti(X,0) = pS*Ui(X,S)—ki(X,S)
(13)
where
ki(X,S) = pSu;(X,0) + p1;(X,0) (14)

Following the derivation of the local integral equation for the
first governing equation on local sub-domain g, we can write
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where Fj(X) are test functions.
Hence, in view of the Gauss divergence theorem, we obtain
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HaQing chosen the test functions as the Heaviside unit step
function with support on the local sub-domain, i.e.
A= { o ary
one obtains the LIE
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which is the expression for the momentum balance. Recall that G
is expressed in terms of the displacement gradients and the
concentration according to Eq. (12).

In view of Egs. (4)-(6) and (10), we may write
ool i(X,£)+ (X, ) +yE(X,t) = BDoc i i(X,t) (18)

Hence, by applying the Laplace transformation technique, one
can obtain
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where
Li(X,S) = oou; i(X,0)+ fc(X,0)+ySc(X,0)+ ¢ (X,0) (20)

The weak form of the governing Eq. (19) on local sub-domain
Qs is given as
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where G*(X) is a test function.
Having used the Gauss divergence theorem, one obtains from
(21)
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