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a b s t r a c t

This paper presents a new robust boundary element method, based on a source point isolation

technique, for solving general anisotropic potential and elastic problems with varying coefficients.

Different types of fundamental solutions can be used to derive the basic integral equations for specific

anisotropic problems, although fundamental solutions corresponding to isotropic problems are

recommended and adopted in the paper. The use of isotropic fundamental solutions for anisotropic

and/or varying material property problems results in domain integrals in the basic integral equations.

The radial integration method is employed to transform the domain integrals into boundary integrals,

resulting in a pure boundary element analysis algorithm that does not need any internal cells.

Numerical examples for 2D and 3D potential and elastic problems are given to demonstrate the

correctness and robustness of the proposed method.

& 2010 Elsevier Ltd. All rights reserved.

1. Introduction

Although the boundary element method (BEM) has been
successfully established and applied in engineering as an effective
and convenient numerical tool for finding the solution to a wide
class of boundary value problems [1], its application to general
anisotropic and non-linear problems is not as effective as to linear
isotropic problems. The main reason is that the anisotropy of a
material increases the number of material properties, and hence
makes the fundamental solutions either too complex or unavail-
able in a closed form [2–4]. To obtain fundamental solutions for
general anisotropic solids, Mura [5] investigated line-integral
representations of the three-dimensional Green’s function in a
full-space medium. Based on complex potential theory, Lekhnits-
kii [6] and Sollero [7] gave anisotropic fundamental solutions
based on finding roots of a characteristic fourth degree poly-
nomial equation [8]. Using Lekhnitskii’s fundamental solutions,
Shiah and Tan solved 2D anisotropic elasticity problems with
body forces [9], in which volume integrals involving the body
forces are transformed into surface integrals by applying a
differentiation technique before doing an analytical transforma-
tion. Wang [10] in 1997 derived explicit expressions for three-
dimensional elastostatic Green’s displacement in general aniso-
tropic solids. In Wang’s work, the numerical solution of a
polynomial of sixth order is required in order to obtain the entire
Green’s function. Wang’s work is purely theoretical. Later, Tonon
et al. [11] applied Wang’s work to a boundary element

implementation. Also in 1997 [12], Ting and Lee derived explicit
expressions for the anisotropic Green’s functions in terms of the
Stroh eigenvalues [13]. For multi-medium problems, Fares and Li
[14] constructed the Green’s functions for multilayered media
using a general image method. By utilizing an inverse Fourier
transform in polar coordinates and combining with Mindlin’s
superposition method, Pan and Yuan [15] derived an expression
of Green’s functions for anisotropic half-space and bimaterial
problems.

The works described above can result in pure boundary-only
integral equations for anisotropic problems with constant
material parameters. The drawback of these works is that
evaluating a line integral or solving an eigenvalue equation set
is cumbersome and often time-consuming. For some problems,
deriving a closed form of fundamental solutions, especially stress
fundamental solutions, is either very difficult in itself or requires
complicated coding of the resulting expression. Besides, for multi-
medium problems, a closed form of the fundamental solutions
may be unavailable and numerical integration of a line integral
may be necessary. This may result in the dependence of Green’s
functions on material properties [15]. On the other hand,
obtaining fundamental solutions for generating pure boundary
integral equations may never be possible for anisotropic problems
involving varying material properties as occurs in functionally
graded material problems (FGMs) [16]. Therefore, a new method
needs to be exploited for solving general anisotropic problems
associated with advanced materials.

In a different manner, Schclar and Partridge [17] proposed an
approach to solve anisotropic problems based on the use of the
fundamental solutions, for a homogeneous material, which leads
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to a boundary-domain integral equation due to the residuals
between the actual and the isotropic quantities. In this approach,
to achieve a boundary-only BEM algorithm, the dual reciprocity
method (DRM) [18] is used to take the relevant domain integral to
the boundary. The main advantage of this approach [17] is that
the anisotropic fundamental solution is avoided and, therefore, it
is easier to apply in solving different types of anisotropic
problems. In a similar way, Chen et al. [19,20] converted the
resulting domain integrals to the boundary based on the method
of fundamental solutions and DRM. The work in [17] is only
suitable for constant material problems, and, since it relies on the
use of DRM to convert domain integrals to the boundary, certain
amounts of internal points may be required to ensure a
satisfactory computational accuracy.

In this paper, a new and simple BEM, named Source-point
Isolation Boundary Element Method (SIBEM), is proposed for
solving general anisotropic potential and elastic problems. The
method is based on a source-point isolation technique and allows
for material properties to be variable. Different types of funda-
mental solutions can be used in the derived integral equations.
For constant material property problems, if the fundamental
solutions used are the ones of the corresponding problem, pure
boundary integral representation can be preserved. However, as
used in this paper, if the fundamental solution of the homo-
geneous material is used for anisotropic problems or for
problems, in which material properties are not constant, the
resulting integral equation includes domain integrals. In this case,
the radial integration method (RIM) [21,22] is adopted to
transform the domain integrals into boundary integrals. For large
gradient potential/elastic problems, some internal points may be
needed to improve the accuracy. However, for general engineer-
ing problems, few or even no internal points are needed to obtain
a satisfactory result [16]. While both RIM and DRM need to use
RBFs to approximate the unknowns included in the domain
integrals, it should be pointed out that DRM transforms domain
integrals to the boundary by employing particular solutions
derived from the differential operator of the problem, whereas
an RIM can transform any domain integrals to the boundary based
on purely mathematical treatments without needing any parti-
cular solutions [23,24]. In numerical examples, 2D and 3D
anisotropic potential and elastic problems are given to demon-
strate the correctness and robustness of the proposed method.
Also, the challenging problem of the honeycomb sandwich
structure is particularly introduced to show the ability of the
proposed techniques to solve complex 3D geometry problems
with strong contrasts in material properties.

2. Boundary-domain integral equations for general potential
problems based on source point isolation technique

2.1. Formulations for general potential problems

The governing equation for general potential problems can be
expressed as [25]
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where kij and Q are the material property tensor and source terms,
respectively, and T denotes the potential. They may all be
functions of spatial coordinates for non-homogeneous problems
or functions of field variables for non-linear problems. It is noted
that the material property tensor is symmetric, i.e., kij ¼ kji. The
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in which G denotes the boundary of the domain O, ni is the i-th
component of the outward normal vector to G, and q is the flux. It
is noted that the domain integral in Eq. (5) may be strongly
singular (depending on the choice of G) and, therefore, a different
integral symbol is used to denote this.

We assume that the weight function G is a fundamental
solution of either isotropic or anisotropic problems. Usually, it is a
function of the distance r between the source point p and field
point q [25,26]. When r-0, G may be singular and, therefore, an
infinitesimal circular domain Oe centered at the source point p

with radius e can be isolated from O (Fig. 1).
The last term in Eq. (3) now can be written as
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Fig. 1. An infinitesimal domain Oe isolated from O.
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