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a b s t r a c t

In this paper, we focus on the variable selection based on the weighted least absolute de-
viation (WLAD) regression with the diverging number of parameters. TheWLAD estimator
and the smoothly clipped absolute deviation (SCAD) are combined to achieve robust pa-
rameter estimation and variable selection in regression simultaneously. Compared with
the LAD–SCAD method, the WLAD–SCAD method will resist the heavy-tailed errors and
outliers in explanatory variables. Furthermore, we obtain consistency and asymptotic nor-
mality of the estimators under certain appropriate conditions. Simulation studies and a real
example are provided to demonstrate the superiority of theWLAD–SCADmethod over the
other regularization methods in the presence of outliers in the explanatory variables and
the heavy-tailed error distribution.

© 2017 The Korean Statistical Society. Published by Elsevier B.V. All rights reserved.

1. Introduction

It is well known that variable selection and feature extraction are basic problems in high-dimensional and massive
data analysis. In a traditional linear regression setting, many selection criteria, e.g., Akaike information criterion (AIC) and
Bayesian information criterion (BIC) have been extensively used in practice. Recently, various shrinkagemethods have been
developed, which include but are not limited to the LASSO (Tibshirani, 1996; Zou, 2006), SCAD (Fan & Li, 2001) and Dantzig
selector (Candès & Tao, 2007). Yet, most existing methods such as penalized least-squares or penalized likelihood (Fan &
Lv, 2011) are designated for light-tailed distributions. The robustness of the aforementioned methods has not yet been
thoroughly studied and well understood.

Robust regularization methods such as the least absolute deviation (LAD) regression and quantile regression have been
used for variable selection in the case of fixed dimensionality (Li & Zhu, 2008; Wu & Liu, 2009; Zou & Yuan, 2008). Belloni
and Chernozhukov (2011) studied the L1-penalized quantile regression in high-dimensional sparse models where the
dimensionality could be larger than the sample size. The LAD regression and the LASSOmethods have been combined (LAD-
LASSO) to carry out robust parameter estimation and variable selection simultaneously (Wang, Li, & Jiang, 2007; Xu & Ying,
2010). Li, Peng, and Zhu (2011) investigate the asymptotic properties of a nonconcave penalizedM-estimator in sparse high-
dimensional linear regressionmodels.Wang (2013) investigate the L1 penalized least absolute deviationmethod in the high-
dimensional sparse linear regression model. The quantile regression for analyzing heterogeneity in ultrahigh dimension is
introduced by Wang, Wu, and Li (2012). Wang and Li (2009) propose efficient shrinkage estimators, using the idea of rank
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regression. Fan, Fan, and Barut (2014) introduced the penalized quantile regression with the weighted L1-penalty (WR-
LASSO) for robust regularization. Feng, Zou, Wang, Wei, and Chen (2015) propose a robust variable selection method in
varying coefficient model.

The LAD regression method is particularly well-suited to the heavy-tailed error distributions. However, it is well-known
that the LAD regression estimation method is only resistant to the outlier in the response variable, but not resistant to the
leverage points. AsWang and Leng (2007) point out, combining the LAD and the LASSOmethod can only produce estimators
that are only resistant to the outliers in the response variable. If the outliers occur in the explanatory variables (leverage
points) the performance of the LAD regression estimators is not better than the ordinary least squares (OLS) regression
estimators so that the performance of the LAD-LASSO estimators will not be better than the ordinary LASSO estimators. To
deal with the outliers in the explanatory variables the weighted LAD (WLAD) regression estimation has been proposed (Ellis
& Morgenthaler, 1992; Giloni, Simonoff, & Sengupta, 2006). Correspondingly, Arslan (2012) proposed weighted LAD-LASSO
method for robust parameter estimation and variable selection in regression.

In this paper we will propose a weighted version of the LAD–SCAD method to find the robust regression estimators and
select the appropriate predictors. In our proposal we will combine the WLAD regression criterion and the SCAD penalty.
The WLAD criterion will downweight the leverage points and be resistant to the outliers in the response variable so that
the resulting regression estimators will be less sensitive to the leverage points and the outliers. Different from Arslan
(2012), for the choice of the weights, in this paper we present the weights selection method based on the concept of
‘‘the decontamination subset’’ (Giloni, Simonoff et al., 2006). In theory, we shown that the LAD–SCAD estimator has the
so-called ‘‘oracle property’’; it is able to select variables consistently, and the estimators of nonzero coefficients have the
same asymptotic distribution as they would if the zero coefficients were known in advance. Furthermore, we investigated
the properties of the WLAD–SCAD estimator.

The rest of the paper is organized as follows. In Section 2 we introduce the WLAD–SCAD regression method to
achieve robust parameter estimation and variable selection simultaneously in a regression analysis. We discuss some of
its theoretical properties in Section 3. In Section 4, we describe the algorithm used to compute the WLAD–SCAD estimator
and the criterion used to choose the regularization parameter. In Section 5we provide simulation studies and a real example
to demonstrate the performance of the proposedmethod. Concluding remarks are given in Section 6. The proofs of themain
results are relegated to Appendix.

2. Weighted LAD–SCAD

2.1. LAD estimator

Consider the linear regression model

yi = xTi βn + εi, i = 1, 2, . . . , n, (1)

whereβn = (βn1, . . . , βnpn)
T is the regression parameter, xi = (xi1, . . . , xipn)

T is the pn-dimensional covariate vector, where
yi ∈ R is the response variable, and εi are the i.i.d. random errors. Here, the subscript is used to make it explicit that both
the covariates and the parameters may change with n.

The most popular way of estimating βn is to minimize the OLS criterion
n

i=1

(yi − xTi βn)
2, (2)

which yields the estimator β̂n = (XTX)−1XTy, where X is the n × pn matrix whose ith row is xTi with rank pn, and
y = (y1, y2, . . . , yn)T is the response vector. The usual assumption for using the OLS method is that the random errors
εi are normally distributed withmean zero and variance σ 2. However, the OLS is not a robust method, because it is sensitive
to outliers and is much less efficient if the error distribution has heavier tails than the normal distribution. A robust method
provides a useful and stable alternative that is not sensitive to outliers.

Huber (1973) introducedM-estimation of βn, which is defined as any value of β̂n that minimizes
n

i=1

ρ(yi − xTi βn) (3)

with a suitable choice of function ρ. Important examples include Lq regression estimate with ρ(x) = |x|q, 1 ≤ q ≤ 2. If
q = 1, then the minimizer of (3) is called the least absolute deviation

n
i=1

|yi − xTi βn|. (4)

However, it is also well known that the LAD regression method is resistant to the outliers in response variable, but it is very
sensitive to the outlying observations in the explanatory variables. To correct this problem of the LAD regression method
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